论文标题

狭窄通道中二维树突状晶体生长的缩放定律

Scaling laws for two-dimensional dendritic crystal growth in a narrow channel

论文作者

Song, Younggil, Tourret, Damien, Karma, Alain

论文摘要

我们在分析和计算上研究了熔融在狭窄的通道中熔化的2D针晶体生长的动力学。我们的分析理论预测,在低过饱和极限下,作为功率定律$ v \ sim t^{ - 2/3} $的增长速度$ v $减少了,我们通过相位和dendritic-needle-network-network-network-network-network-network-network-network-network-network-network-network-network-netWork-network-network-network-network-network-network-network-network-network-network Simulations进行了验证。模拟进一步显示,在关键通道宽度$λ\大约5l_d $上方,其中$ l_d $扩散长度,针晶体以常数$ v <v_s $生长,其中$ v_s $是自由生长的针晶体速度,并且接近$ v_s $ v_s $ v_s $ in lim $ v_gg gg gg l_d l_d $。

We investigate analytically and computationally the dynamics of 2D needle crystal growth from the melt in a narrow channel. Our analytical theory predicts that, in the low supersaturation limit, the growth velocity $V$ decreases in time $t$ as a power law $V \sim t^{-2/3}$, which we validate by phase-field and dendritic-needle-network simulations. Simulations further reveal that, above a critical channel width $Λ\approx 5l_D$, where $l_D$ the diffusion length, needle crystals grow with a constant $V<V_s$, where $V_s$ is the free-growth needle crystal velocity, and approaches $V_s$ in the limit $Λ\gg l_D$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源