论文标题

无监督的特征聚类改善了医学图像分割的对比度表示学习

Unsupervised Feature Clustering Improves Contrastive Representation Learning for Medical Image Segmentation

论文作者

Zhang, Yejia, Hu, Xinrong, Sapkota, Nishchal, Shi, Yiyu, Chen, Danny Z.

论文摘要

自我监督的实例歧视是学习特征表示并解决有限的医学图像注释的有效借口任务。这个想法是在强迫所有其他增强图像的表示对比的同时,使相同图像的转换版本的特征相似。但是,这种基于实例的对比学习使桌面表现不佳,无法最大程度地提高具有相似内容的图像之间的特征亲和力,同时适得其反地将其表示形式分开。该范式的最新改进(例如,利用多模式数据,纵向研究中的不同图像,空间对应关系)要么依赖于其他视图,要么对数据属性做出了严格的假设,这可以牺牲可推广性和适用性。为了应对这一挑战,我们提出了一种新的自学对比学习方法,该方法使用无监督的特征聚类来更好地选择正面和负面图像样本。更具体地说,我们通过自动编码器以无监督的方式获得的层次聚类特征产生伪级,并通过避免从相同的伪级中选择负面因素,以防止对比度学习期间的破坏性干扰。对2D皮肤皮肤镜图像分割和3D多级全心CT分割的实验表明,我们的方法在这些任务上优于最先进的自我监督对比技术。

Self-supervised instance discrimination is an effective contrastive pretext task to learn feature representations and address limited medical image annotations. The idea is to make features of transformed versions of the same images similar while forcing all other augmented images' representations to contrast. However, this instance-based contrastive learning leaves performance on the table by failing to maximize feature affinity between images with similar content while counter-productively pushing their representations apart. Recent improvements on this paradigm (e.g., leveraging multi-modal data, different images in longitudinal studies, spatial correspondences) either relied on additional views or made stringent assumptions about data properties, which can sacrifice generalizability and applicability. To address this challenge, we propose a new self-supervised contrastive learning method that uses unsupervised feature clustering to better select positive and negative image samples. More specifically, we produce pseudo-classes by hierarchically clustering features obtained by an auto-encoder in an unsupervised manner, and prevent destructive interference during contrastive learning by avoiding the selection of negatives from the same pseudo-class. Experiments on 2D skin dermoscopic image segmentation and 3D multi-class whole heart CT segmentation demonstrate that our method outperforms state-of-the-art self-supervised contrastive techniques on these tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源