论文标题
R-PRED:通过基于引起注意的轨迹精炼的两阶段运动预测
R-Pred: Two-Stage Motion Prediction Via Tube-Query Attention-Based Trajectory Refinement
论文作者
论文摘要
预测动态代理的未来运动对于确保安全和评估自动机器人运动计划中的风险至关重要。在这项研究中,我们提出了一种称为R-PRED的两阶段运动预测方法,旨在使用初始轨迹建议和轨迹改进网络的级联有效地利用场景和相互作用上下文。最初的轨迹提案网络产生与未来轨迹分布的M模式相对应的M轨迹建议。轨迹改进网络使用1)试验场景注意(TQSA)和2)提案级相互作用注意(PIA)机制增强了每个M提议。 TQSA使用管子Queries来汇总本地场景上下文特征,这些特征是从近距离轨迹提案中汇总的。 PIA通过使用一组轨迹提案对邻近药物距离选择的一组轨迹提案进行建模,从而进一步增强了轨迹建议。我们在Argoverse和Nuscenes数据集上进行的实验表明,与单级基线相比,所提出的改进网络可提供显着的性能改进,并且R-Pred在基准的某些类别中实现了最先进的性能。
Predicting the future motion of dynamic agents is of paramount importance to ensuring safety and assessing risks in motion planning for autonomous robots. In this study, we propose a two-stage motion prediction method, called R-Pred, designed to effectively utilize both scene and interaction context using a cascade of the initial trajectory proposal and trajectory refinement networks. The initial trajectory proposal network produces M trajectory proposals corresponding to the M modes of the future trajectory distribution. The trajectory refinement network enhances each of the M proposals using 1) tube-query scene attention (TQSA) and 2) proposal-level interaction attention (PIA) mechanisms. TQSA uses tube-queries to aggregate local scene context features pooled from proximity around trajectory proposals of interest. PIA further enhances the trajectory proposals by modeling inter-agent interactions using a group of trajectory proposals selected by their distances from neighboring agents. Our experiments conducted on Argoverse and nuScenes datasets demonstrate that the proposed refinement network provides significant performance improvements compared to the single-stage baseline and that R-Pred achieves state-of-the-art performance in some categories of the benchmarks.