论文标题
$ \ operatatorName {sl}(n,\ mathbf {r})$ \ operataTorname中的整体Zariski密集的表面组
Integral Zariski dense surface groups in $\operatorname{SL}(n,\mathbf{R})$
论文作者
论文摘要
考虑到一个数字字段$ k $,我们表明,封闭的表面组的某些$ k $ - 构成表示形式可能会变形为zariski密度,同时保留原始表示的许多有用的属性。这概括了一种由于长而thistlethwaite而导致的方法,他用它表明了$ \ operatatorName {sl}中的薄表面组(2k+1,\ mathbf {z})$都存在所有$ k $。
Given a number field $K$, we show that certain $K$-integral representations of closed surface groups can be deformed to being Zariski dense while preserving many useful properties of the original representation. This generalizes a method due to Long and Thistlethwaite who used it to show that thin surface groups in $\operatorname{SL}(2k+1,\mathbf{Z})$ exist for all $k$.