论文标题

直接比较量子投影噪声极限以下两个旋转的光学时钟

Direct comparison of two spin squeezed optical clocks below the quantum projection noise limit

论文作者

Robinson, John M, Miklos, Maya, Tso, Yee Ming, Kennedy, Colin J., Bothwell, Tobias, Kedar, Dhruv, Thompson, James K., Ye, Jun

论文摘要

建立可扩展的量子系统,这些系统证明基于纠缠的真正性能增强是包括计算,网络,模拟和计量学在内的领域的主要科学目标。巨大的挑战来自越来越大的量子系统中纠缠的脆弱性。利用大量原子的光原子钟已经推动了测量科学的前沿,基于量子状态的精确工程和原子相互作用的控制。但是,当今的最先进的光原子时钟受许多不相关原子定义的量子投影噪声(QPN)的限制。在产生自旋挤压原子状态的开创性工作已经显示出将纠缠融入最佳性能时钟的途径。但是,为了直接在工作时钟中直接证明量子纠缠的优势,我们必须防止降低量子相干性并引入不受控制的扰动,并最大程度地减少询问时钟激光器引起的技术噪声的影响。在这里,我们提出了一个新的光学时钟平台,该平台与集体强耦合腔集成了用于量子非拆卸(QND)测量的QED。为了优化自旋测量精度和连贯性丧失之间的竞争,我们以1.9x10 $^4 $原子测量了-1.8(7)dB的荒地参数,从而验证了纠缠的存在。此外,一个移动的晶格使腔可以单独解决两个独立的子同符,从而使我们能够连续挤压两个时钟合奏并比较它们的性能。两个挤压时钟之间的这种差异比较直接验证了QPN以下2.0(3)dB的增强时钟稳定性,而在不减少任何技术噪声贡献的情况下,以10 $^{ - 17} $的测量精度水平为10 $^{ - 17} $,高于标准量子限制(SQL)的0.6(3)dB。

Building scalable quantum systems that demonstrate genuine performance enhancement based on entanglement is a major scientific goal for fields including computing, networking, simulations, and metrology. The tremendous challenge arises from the fragility of entanglement in increasingly larger sized quantum systems. Optical atomic clocks utilizing a large number of atoms have pushed the frontier of measurement science, building on precise engineering of quantum states and control of atomic interactions. However, today's state-of-the-art optical atomic clocks are limited by the quantum projection noise (QPN) defined by many uncorrelated atoms. Pioneering work on producing spin squeezed states of atoms has shown a path towards integrating entanglement into the best performing clocks. However, to directly demonstrate advantage of quantum entanglement in a working clock we must prevent backaction effects that degrade quantum coherence and introduce uncontrolled perturbations, as well as minimize the influence of technical noise arising from the interrogating clock laser. Here we present a new optical clock platform integrated with collective strong-coupling cavity QED for quantum non-demolition (QND) measurement. Optimizing the competition between spin measurement precision and loss of coherence, we measure a Wineland parameter of -1.8(7) dB for 1.9x10$^4$ atoms, thus verifying the presence of entanglement. Furthermore, a moving lattice allows the cavity to individually address two independent sub-ensembles, enabling us to spin squeeze two clock ensembles successively and compare their performance. This differential comparison between the two squeezed clocks directly verifies enhanced clock stability of 2.0(3) dB below QPN, and 0.6(3) dB above the standard quantum limit (SQL), at the measurement precision level of 10$^{-17}$, without subtracting any technical noise contributions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源