论文标题

$ \ MATHCAL {PT} $ - 具有本地增益和损失的Bose-Hubbard模型中的对称相位过渡

$\mathcal{PT}$-symmetry phase transition in a Bose-Hubbard model with localized gain and loss

论文作者

Moca, Cătălin Paşcu, Sticlet, Doru, Dóra, Balázs, Zaránd, Gergely

论文摘要

我们研究了一种具有交替增益和损失的两分部分玻色 - 哈伯德模型所描述的一维骨化系统的耗散动力学。该模型在某些特定条件下展示了$ \ Mathcal {pt} $对称性,并具有$ \ Mathcal {pt} $ - 对称相位过渡。它的特征是与偶数和奇数位点之间的种群失衡相对应的顺序参数,类似于赫米尔人领域中的连续相变。在非互动限制中,我们准确地解决了问题,并计算顺序参数的参数依赖性。相互作用的极限在平均场级别解决,这使我们能够为模型构建相图。我们发现交互和耗散率都引起了$ \ Mathcal {pt} $ - 对称性破坏。另一方面,及时的耗散耦合的定期调制稳定了$ \ Mathcal {pt} $ - 对称制度。我们的发现是在具有增益和损失的紧密结合链上进行了数字上证实的。

We study the dissipative dynamics of a one-dimensional bosonic system described in terms of the bipartite Bose-Hubbard model with alternating gain and loss. This model exhibits the $\mathcal{PT}$ symmetry under some specific conditions and features a $\mathcal{PT}$-symmetry phase transition. It is characterized by an order parameter corresponding to the population imbalance between even and odd sites, similar to the continuous phase transitions in the Hermitian realm. In the noninteracting limit, we solve the problem exactly and compute the parameter dependence of the order parameter. The interacting limit is addressed at the mean-field level, which allows us to construct the phase diagram for the model. We find that both the interaction and dissipation rates induce a $\mathcal{PT}$-symmetry breaking. On the other hand, periodic modulation of the dissipative coupling in time stabilizes the $\mathcal{PT}$-symmetric regime. Our findings are corroborated numerically on a tight-binding chain with gain and loss.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源