论文标题

病变引导可解释的很少的弱射门医疗报告一代

Lesion Guided Explainable Few Weak-shot Medical Report Generation

论文作者

Sun, Jinghan, Wei, Dong, Wang, Liansheng, Zheng, Yefeng

论文摘要

医学图像被广泛用于临床实践中进行诊断。自动生成可解释的医疗报告可以减轻放射科医生的负担,并促进及时的护理。但是,大多数现有的自动报告生成方法都需要足够的标记数据进行培训。此外,学习的模型只能为培训类别生成报告,缺乏适应以前看不见的新型疾病的能力。为此,我们提出了一个可解释的病变,可以通过视觉和语义特征对齐方式来学习可见和新颖类之间的相关性,旨在生成在培训中未观察到的疾病的医学报告。它集成了以病变为中心的特征提取器和基于变压器的报告生成模块。具体而言,以病变为中心的特征提取器检测到异常区域,并了解与多视图(视觉和词汇)嵌入的可见类别和新颖类之间的相关性。然后,将检测区域和相应嵌入的特征串联成多视图输入到报告生成报告的报告生成模块中,包括图像中检测到的文本描述和相应的异常区域。我们对FFA-IR进行了实验,该数据集提供了可解释的注释,这表明我们的框架在新型疾病的报告生成上的表现优于其他人。

Medical images are widely used in clinical practice for diagnosis. Automatically generating interpretable medical reports can reduce radiologists' burden and facilitate timely care. However, most existing approaches to automatic report generation require sufficient labeled data for training. In addition, the learned model can only generate reports for the training classes, lacking the ability to adapt to previously unseen novel diseases. To this end, we propose a lesion guided explainable few weak-shot medical report generation framework that learns correlation between seen and novel classes through visual and semantic feature alignment, aiming to generate medical reports for diseases not observed in training. It integrates a lesion-centric feature extractor and a Transformer-based report generation module. Concretely, the lesion-centric feature extractor detects the abnormal regions and learns correlations between seen and novel classes with multi-view (visual and lexical) embeddings. Then, features of the detected regions and corresponding embeddings are concatenated as multi-view input to the report generation module for explainable report generation, including text descriptions and corresponding abnormal regions detected in the images. We conduct experiments on FFA-IR, a dataset providing explainable annotations, showing that our framework outperforms others on report generation for novel diseases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源