论文标题

搜索稀有的HADRONIC衰变$ b^0 \ rightarrow p \ bar {p} p \ bar {p} $和$ b^0_ {s} \ rightArrow p \ bar {p} p \ bar {p \ bar {p} $

Searches for the rare hadronic decays $B^0 \rightarrow p\bar{p}p\bar{p}$ and $B^0_{s} \rightarrow p\bar{p}p\bar{p}$

论文作者

LHCb collaboration

论文摘要

搜索稀有的harronic衰变$ b^0 \ rightarrow p \ bar {p} p \ bar {p} $和$ b^0_ {s} \ rightarrow p \ bar {p} p \ bar {p} p \ bar {p} $使用Proton-proton碰撞录制的proton-proton Collision collision colding proton-proton collision coldient the LHCB实验和对应的um um umiin semptight and um um um umining semptight and um umining semptight and un um umining 9 $ \ rm {fb}^{ - 1} $。 $ 9.3 \,σ$和$ 4.0 \,σ$的意义,包括统计和系统的不确定性,对于$ b^0 \ rightArrow p \ bar {p} p \ bar {p} p \ bar {p} $和$ b^0_ {s} \ s} \ rightarrow p \ bar p \ bar p \ p \ p}分支分数是相对于拓扑相似的归一化测量的$ b^0 \ rightArrow j/ψ(\ rightarrow p \ bar {p})k^{*0}(\ rightArrow k^+π^ - )$和$ b^0_ k^+ k^ - )$。分支馏分被测量为$ \ MATHCAL {B}(B^0 \ rightarrow P \ bar {p} p \ bar {p})=(2.2 \ pm 0.4 \ pm 0.4 \ pm 0.1 \ pm 0.1 \ pm 0.1) p \ bar {p} p \ bar {p})=(2.3 \ pm 1.0 \ pm 0.2 \ pm 0.1)\ times 10^{ - 8} $。在这些测量值中,第一个不确定性是统计的,第二个是系统的,第三个是由于归一化通道的外部分支部分所致。

Searches for the rare hadronic decays $B^0 \rightarrow p\bar{p}p\bar{p}$ and $B^0_{s} \rightarrow p\bar{p}p\bar{p}$ are performed using proton-proton collision data recorded by the LHCb experiment and corresponding to an integrated luminosity of 9$\rm{fb}^{-1}$. Significances of $9.3\,σ$ and $4.0\,σ$, including statistical and systematic uncertainties, are obtained for the $B^0 \rightarrow p\bar{p}p\bar{p}$ and $B^0_{s} \rightarrow p\bar{p}p\bar{p}$ signals, respectively. The branching fractions are measured relative to the topologically similar normalisation decays $B^0 \rightarrow J/ψ(\rightarrow p\bar{p}) K^{*0}(\rightarrow K^+ π^-)$ and $B^0_{s} \rightarrow J/ψ(\rightarrow p\bar{p}) ϕ(\rightarrow K^+ K^-)$. The branching fractions are measured to be $ \mathcal{B}(B^0 \rightarrow p\bar{p}p\bar{p}) = ( 2.2 \pm 0.4 \pm 0.1 \pm 0.1 ) \times 10^{-8} $ and $ \mathcal{B}(B^0_{s} \rightarrow p\bar{p}p\bar{p}) = ( 2.3 \pm 1.0 \pm 0.2 \pm 0.1 ) \times 10^{-8}$. In these measurements, the first uncertainty is statistical, the second is systematic and the third one is due to the external branching fraction of the normalisation channel.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源