论文标题

流畅的整数和Dickman $ρ$功能

Smooth integers and the Dickman $ρ$ function

论文作者

Gorodetsky, Ofir

论文摘要

我们为$ψ(x,y)$建立了一个渐近公式,其形状为$ xρ(\ log x/\ log y)$ times校正因子。这些因素考虑了Zeta Zeros和Prime Powers的贡献,该公式可以被视为$ψ(x,y)$的(近似)明确公式。使用此公式,我们证明了$ψ(x,y)$的振荡结果,该结果解决了$ψ(x,y)\ asympxρ(\ log x/\ log y)$的有效性范围内的希尔德布兰德问题。我们还解决了关于$ψ(x,y)\ gexρ(\ log x/\ log y)$的有效性范围范围的问题。 在途中,我们改善了$ψ(x,y)$的经典估计,并在Riemann假设上,发现了$ y =(\ log x)^{3/2+o(1)} $的$ψ(x,y)$的意外阶段过渡。

We establish an asymptotic formula for $Ψ(x,y)$ whose shape is $x ρ(\log x/\log y)$ times correction factors. These factors take into account the contributions of zeta zeros and prime powers and the formula can be regarded as an (approximate) explicit formula for $Ψ(x,y)$. With this formula at hand we prove oscillation results for $Ψ(x,y)$, which resolve a question of Hildebrand on the range of validity of $Ψ(x,y) \asymp xρ(\log x/\log y)$. We also address a question of Pomerance on the range of validity of $Ψ(x,y) \ge x ρ(\log x/\log y)$. Along the way we improve classical estimates for $Ψ(x,y)$ and, on the Riemann Hypothesis, uncover an unexpected phase transition of $Ψ(x,y)$ at $y=(\log x)^{3/2+o(1)}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源