论文标题

部分可观测时空混沌系统的无模型预测

On Measuring the Intrinsic Few-Shot Hardness of Datasets

论文作者

Zhao, Xinran, Murty, Shikhar, Manning, Christopher D.

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

While advances in pre-training have led to dramatic improvements in few-shot learning of NLP tasks, there is limited understanding of what drives successful few-shot adaptation in datasets. In particular, given a new dataset and a pre-trained model, what properties of the dataset make it \emph{few-shot learnable} and are these properties independent of the specific adaptation techniques used? We consider an extensive set of recent few-shot learning methods, and show that their performance across a large number of datasets is highly correlated, showing that few-shot hardness may be intrinsic to datasets, for a given pre-trained model. To estimate intrinsic few-shot hardness, we then propose a simple and lightweight metric called "Spread" that captures the intuition that few-shot learning is made possible by exploiting feature-space invariances between training and test samples. Our metric better accounts for few-shot hardness compared to existing notions of hardness, and is ~8-100x faster to compute.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源