论文标题
NEHARI歧管方法,用于具有可变指数的大型双相问题
Nehari manifold approach for superlinear double phase problems with variable exponents
论文作者
论文摘要
在本文中,我们考虑了由带有超线性右侧的可变指数双相操作员驱动的准线性椭圆方程。在对非线性的非常笼统的假设下,我们证明了此类问题的多重性结果,在这种问题上,我们显示了一个积极的解决方案,负面解决方案和带有变化符号的解决方案。通过Nehari歧管方法获得了签名解决方案,此外,我们还可以提供有关其淋巴结域的信息。
In this paper we consider quasilinear elliptic equations driven by the variable exponent double phase operator with superlinear right-hand sides. Under very general assumptions on the nonlinearity, we prove a multiplicity result for such problems whereby we show the existence of a positive solution, a negative one and a solution with changing sign. The sign-changing solution is obtained via the Nehari manifold approach and, in addition, we can also give information on its nodal domains.