论文标题
模型在具有潜在对称性的域中具有令人惊讶的效果
The Surprising Effectiveness of Equivariant Models in Domains with Latent Symmetry
论文作者
论文摘要
广泛的工作表明,模棱两可的神经网络可以通过在网络体系结构中执行电感偏差来显着提高样本效率和概括。这些应用程序通常假定域对称性通过模型输入和输出的显式转换充分描述。但是,许多现实生活中的应用仅包含潜在或部分对称性,这些对称性无法通过简单的输入转换来轻松描述。在这些情况下,有必要在环境中学习对称性,而不是在网络体系结构上数学上施加对称性。令人惊讶的是,我们发现不完全匹配域对称性的施加了符合性约束,这对于学习环境中的真实对称性非常有帮助。我们区分外在和不正确的对称约束,并表明施加不正确的对称性可以阻碍模型的性能,但施加外部对称性实际上可以提高性能。我们证明,在监督学习中,对具有潜在对称性的领域的域以及用于机器人操纵和控制问题的强化学习,对具有潜在对称性的领域的非等价方法可以显着胜过非等价方法。
Extensive work has demonstrated that equivariant neural networks can significantly improve sample efficiency and generalization by enforcing an inductive bias in the network architecture. These applications typically assume that the domain symmetry is fully described by explicit transformations of the model inputs and outputs. However, many real-life applications contain only latent or partial symmetries which cannot be easily described by simple transformations of the input. In these cases, it is necessary to learn symmetry in the environment instead of imposing it mathematically on the network architecture. We discover, surprisingly, that imposing equivariance constraints that do not exactly match the domain symmetry is very helpful in learning the true symmetry in the environment. We differentiate between extrinsic and incorrect symmetry constraints and show that while imposing incorrect symmetry can impede the model's performance, imposing extrinsic symmetry can actually improve performance. We demonstrate that an equivariant model can significantly outperform non-equivariant methods on domains with latent symmetries both in supervised learning and in reinforcement learning for robotic manipulation and control problems.