论文标题
扭曲双层石墨烯的相互作用模型:一种量子化学方法
Interacting models for twisted bilayer graphene: a quantum chemistry approach
论文作者
论文摘要
近年来,扭曲的双层石墨烯(TBG)中相关状态的性质受到了极大的关注。我们介绍了使用量子化学中的一套TBG相互作用的Bistritzer-Macdonald(IBM)模型的数值研究,包括Hartree-fock,耦合聚类单打,Doubles Singles(CCSD)和触发型三元组(CCSD(T))(CCSD(CCSD)),以及量子化学量(CCSD(CCSD)(CCSD(t))。我们对TBG的处理是不可知的,因此我们提出了一种新的规格不变的公式,以检测相互作用模型中的自发对称性破坏。为了基准我们的方法,我们专注于简化的无旋转,无谷IBM模型。在Integer填充($ν= 0 $)上,所有数值方法都以能量和$ C_ {2Z} \ Mathcal {T} $ Symmetry Breaking而同意。此外,作为我们的基准测试的一部分,我们探讨了不同方案在IBM模型中删除``双重计数''的影响。我们在整数填充方面的结果表明,未来对TBG系统的研究可能需要不同IBM模型的交叉验证。在整数填充方面进行基准测试方法之后,我们对Integer填充附近的IBM模型进行了首次系统研究($ |ν| <0.2 $)。在此制度中,我们发现基态可以处于金属和$ c_ {2z} \ Mathcal {t} $对称破坏阶段。基态似乎具有较低的熵,因此可以通过单个Slater决定因素近似地近似。此外,我们观察到许多低熵状态,其能量非常接近近乎整数填充体中的基态能量。
The nature of correlated states in twisted bilayer graphene (TBG) at the magic angle has received intense attention in recent years. We present a numerical study of an interacting Bistritzer-MacDonald (IBM) model of TBG using a suite of methods in quantum chemistry, including Hartree-Fock, coupled cluster singles, doubles (CCSD), and perturbative triples (CCSD(T)), as well as a quantum chemistry formulation of the density matrix renormalization group method (DMRG). Our treatment of TBG is agnostic to gauge choices, and hence we present a new gauge-invariant formulation to detect the spontaneous symmetry breaking in interacting models. To benchmark our approach, we focus on a simplified spinless, valleyless IBM model. At integer filling ($ν=0$), all numerical methods agree in terms of energy and $C_{2z} \mathcal{T}$ symmetry breaking. Additionally, as part of our benchmarking, we explore the impact of different schemes for removing ``double-counting'' in the IBM model. Our results at integer filling suggest that cross-validation of different IBM models may be needed for future studies of the TBG system. After benchmarking our approach at integer filling, we perform the first systematic study of the IBM model near integer filling (for $|ν|< 0.2$). In this regime, we find that the ground state can be in a metallic and $C_{2z} \mathcal{T}$ symmetry breaking phase. The ground state appears to have low entropy, and therefore can be relatively well approximated by a single Slater determinant. Furthermore, we observe many low entropy states with energies very close to the ground state energy in the near integer filling regime.