论文标题

统计的天文图像的统计推断

Statistical Inference for Coadded Astronomical Images

论文作者

Wang, Mallory, Mendoza, Ismael, Wang, Cheng, Avestruz, Camille, Regier, Jeffrey

论文摘要

共同的天文图像是通过堆叠多个单曝光图像来创建的。因为在数据大小方面,串联图像比它们总结的单曝光图像小,所以加载和处理它们在计算上的昂贵。但是,图像共同辅助引入了像素之间的额外依赖性,这使它们的原则统计分析变得复杂。我们提出了一种使用共同的天文图像进行光源参数推断的原则性贝叶斯方法。我们的方法隐含地在有助于共同图像的单个暴露像素强度上边缘化,从而使其具有扩展到下一代天文调查所需的计算效率。作为概念的证明,我们表明,使用模拟COADDS估算恒星位置和通量的方法优于在单曝光图像上训练的方法。

Coadded astronomical images are created by stacking multiple single-exposure images. Because coadded images are smaller in terms of data size than the single-exposure images they summarize, loading and processing them is less computationally expensive. However, image coaddition introduces additional dependence among pixels, which complicates principled statistical analysis of them. We present a principled Bayesian approach for performing light source parameter inference with coadded astronomical images. Our method implicitly marginalizes over the single-exposure pixel intensities that contribute to the coadded images, giving it the computational efficiency necessary to scale to next-generation astronomical surveys. As a proof of concept, we show that our method for estimating the locations and fluxes of stars using simulated coadds outperforms a method trained on single-exposure images.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源