论文标题

SPECTNET:使用可学习的光谱图的端到端音频信号分类

SpectNet : End-to-End Audio Signal Classification Using Learnable Spectrograms

论文作者

Ansari, Md. Istiaq, Hasan, Taufiq

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Pattern recognition from audio signals is an active research topic encompassing audio tagging, acoustic scene classification, music classification, and other areas. Spectrogram and mel-frequency cepstral coefficients (MFCC) are among the most commonly used features for audio signal analysis and classification. Recently, deep convolutional neural networks (CNN) have been successfully used for audio classification problems using spectrogram-based 2D features. In this paper, we present SpectNet, an integrated front-end layer that extracts spectrogram features within a CNN architecture that can be used for audio pattern recognition tasks. The front-end layer utilizes learnable gammatone filters that are initialized using mel-scale filters. The proposed layer outputs a 2D spectrogram image which can be fed into a 2D CNN for classification. The parameters of the entire network, including the front-end filterbank, can be updated via back-propagation. This training scheme allows for fine-tuning the spectrogram-image features according to the target audio dataset. The proposed method is evaluated in two different audio signal classification tasks: heart sound anomaly detection and acoustic scene classification. The proposed method shows a significant 1.02\% improvement in MACC for the heart sound classification task and 2.11\% improvement in accuracy for the acoustic scene classification task compared to the classical spectrogram image features. The source code of our experiments can be found at \url{https://github.com/mHealthBuet/SpectNet}

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源