论文标题

用多尺度注意融合模块补充的硬渗出分段

Hard Exudate Segmentation Supplemented by Super-Resolution with Multi-scale Attention Fusion Module

论文作者

Zhang, Jiayi, Chen, Xiaoshan, Qiu, Zhongxi, Yang, Mingming, Hu, Yan, Liu, Jiang

论文摘要

硬渗出液(HE)是视网膜水肿最具体的生物标志物。确切的他分割对于疾病诊断和治疗至关重要,但是自动分割受其特征的巨大变化挑战,包括大小,形状和位置,这使得很难检测到微小的病变和病变边界。考虑到分割和超分辨率任务之间的互补特征,本文提出了一种具有辅助超级分辨率任务的新型硬渗出分割方法,名为SS-MAF,这为微小病变和边界检测带来了有用的详细特征。具体而言,我们为我们的双流框架提出了一个名为多尺度注意融合(MAF)模块的融合模块,以有效整合这两个任务的特征。 MAF首先采用分裂空间卷积(SSC)层进行多尺度特征提取,然后利用注意机制来融合这两个任务。考虑到像素依赖性,我们引入了区域互信息(RMI)损失,以优化用于微小病变和边界检测的MAF模块。我们在两个公共病变数据集(IDRID和E-ophtha)上评估了我们的方法。我们的方法在定量和定性上都显示出具有低分辨率输入的竞争性能。在e-ophtha数据集上,与最先进的方法相比,该方法可以实现$ \ geq3 \%$更高的骰子和召回。

Hard exudates (HE) is the most specific biomarker for retina edema. Precise HE segmentation is vital for disease diagnosis and treatment, but automatic segmentation is challenged by its large variation of characteristics including size, shape and position, which makes it difficult to detect tiny lesions and lesion boundaries. Considering the complementary features between segmentation and super-resolution tasks, this paper proposes a novel hard exudates segmentation method named SS-MAF with an auxiliary super-resolution task, which brings in helpful detailed features for tiny lesion and boundaries detection. Specifically, we propose a fusion module named Multi-scale Attention Fusion (MAF) module for our dual-stream framework to effectively integrate features of the two tasks. MAF first adopts split spatial convolutional (SSC) layer for multi-scale features extraction and then utilize attention mechanism for features fusion of the two tasks. Considering pixel dependency, we introduce region mutual information (RMI) loss to optimize MAF module for tiny lesions and boundary detection. We evaluate our method on two public lesion datasets, IDRiD and E-Ophtha. Our method shows competitive performance with low-resolution inputs, both quantitatively and qualitatively. On E-Ophtha dataset, the method can achieve $\geq3\%$ higher dice and recall compared with the state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源