论文标题

零熵的Borcherds Lattices和K3表面

Borcherds lattices and K3 surfaces of zero entropy

论文作者

Brandhorst, Simon, Mezzedimi, Giacomo

论文摘要

让$ L $成为一个均匀的双曲线晶格,无限许多简单的$(-2)$ - 根。如果$ l $ a Borcherds lattice承认具有有限的内部产品的各向同性矢量,所有简单的$(-2)$ - 根。我们表明,仅当$ l $的熵为零时,或者仅当$ l $的所有对称保留某些各向异性向量时,我们才表明这种情况是这种情况。我们获得了Borcherds Lattices的完整分类,包括$ 194 $ lattices。反过来,这提供了与几乎可解决的对称组的等级$ \ ge 5 $的双曲线晶格的分类。最后,我们将这些一般结果应用于K3表面。我们获得了零熵和无限自动形态组的K3表面的Picard Lattices分类,其中包括$ 193 $ lattices。特别是我们表明,所有kummer表面,所有超高的K3表面和所有覆盖富集表面的K3表面(除一个例外)都接受了正熵的自动形态。

Let $L$ be an even, hyperbolic lattice with infinitely many simple $(-2)$-roots. We call $L$ a Borcherds lattice if it admits an isotropic vector with bounded inner product with all the simple $(-2)$-roots. We show that this is the case if and only if $L$ has zero entropy, or equivalently if and only if all symmetries of $L$ preserve some isotropic vector. We obtain a complete classification of Borcherds lattices, consisting of $194$ lattices. In turn this provides a classification of hyperbolic lattices of rank $\ge 5$ with virtually solvable symmetry group. Finally, we apply these general results to the case of K3 surfaces. We obtain a classification of Picard lattices of K3 surfaces of zero entropy and infinite automorphism group, consisting of $193$ lattices. In particular we show that all Kummer surfaces, all supersingular K3 surfaces and all K3 surfaces covering an Enriques surface (with one exception) admit an automorphism of positive entropy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源