论文标题
在线设置中的动态定价和数量折扣
Dynamic Pricing with Volume Discounts in Online Settings
论文作者
论文摘要
根据国际主要报告,由于机器学习和高级分析工具,到2030年,全球范围内将超过14万亿美元的全球范围。在本文中,我们在本文中构成了一系列问题,估计的未锁定价值将大约0.5亿美元的每年,我们将构成定价问题的具体类别。特别是,当目标函数是利润最大化而仅可用交易数据时,本文着重于电子商务的定价。此设置是现实世界中最常见的设置之一。我们的工作旨在找到定价策略,允许在不同的量阈值下定义最佳价格,以服务于不同类别的用户。此外,我们面临的主要挑战,在现实世界中常见,即处理有限的可用数据。我们设计了一种两阶段的在线学习算法,即PVD-B,能够以在线方式逐步利用数据。该算法首先估计需求曲线并检索最佳的平均价格,随后它提供了折扣以区分每个体积阈值的价格。我们与一家意大利电子商务公司合作进行了一个真实的4个月A/B测试实验,其中与与B配置相对应的人类定价专家相比,我们的算法PVD-B-corress对应于配置。在实验结束时,我们的算法总营业额约为300个Keuros,表现优于B配置性能约55%。自2022年1月以来,我们与我们合作的意大利公司决定采用1200多种产品的算法。
According to the main international reports, more pervasive industrial and business-process automation, thanks to machine learning and advanced analytic tools, will unlock more than 14 trillion USD worldwide annually by 2030. In the specific case of pricing problems-which constitute the class of problems we investigate in this paper-, the estimated unlocked value will be about 0.5 trillion USD per year. In particular, this paper focuses on pricing in e-commerce when the objective function is profit maximization and only transaction data are available. This setting is one of the most common in real-world applications. Our work aims to find a pricing strategy that allows defining optimal prices at different volume thresholds to serve different classes of users. Furthermore, we face the major challenge, common in real-world settings, of dealing with limited data available. We design a two-phase online learning algorithm, namely PVD-B, capable of exploiting the data incrementally in an online fashion. The algorithm first estimates the demand curve and retrieves the optimal average price, and subsequently it offers discounts to differentiate the prices for each volume threshold. We ran a real-world 4-month-long A/B testing experiment in collaboration with an Italian e-commerce company, in which our algorithm PVD-B-corresponding to A configuration-has been compared with human pricing specialists-corresponding to B configuration. At the end of the experiment, our algorithm produced a total turnover of about 300 KEuros, outperforming the B configuration performance by about 55%. The Italian company we collaborated with decided to adopt our algorithm for more than 1,200 products since January 2022.