论文标题

加速无元素绿色功能模拟,并具有嵌入自我耐加速

Accelerating Nonequilibrium Green functions simulations with embedding selfenergies

论文作者

Balzer, Karsten, Schlünzen, Niclas, Ohldag, Hannes, Joost, Jan-Philip, Bonitz, Michael

论文摘要

实时非平衡绿色功能(NEGF)非常成功地模拟相关的许多粒子系统的动力学,远离平衡。但是,NEGF模拟在计算上昂贵,因为努力随模拟持续时间的立方体规模缩放。最近,我们引入了G1-G2方案,该方案允许对时间线性缩放进行巨大的降低[Schlünzen,Phys。莱特牧师。 124,076601(2020); Joost等人,物理。 Rev. B 101,245101(2020)]。在这里,我们解决了另一个问题:计算工作与系统大小的快速增长。在许多情况下,感兴趣系统与浴室耦合到无需进行电子特性的微观分辨率的电触点或类似的宏观系统,可以进行有效的简化。这是通过引入嵌入式自我能力来实现的,这是在标准NEGF模拟中成功的概念。在这里,我们演示了如何将嵌入概念引入G1-G2方案中,从而使我们能够大大加速negf嵌入模拟。该方法与所有先进的自身自身抗体兼容,这些自身能够由G1-G2方案表示[如Joost等人,Phys。 Rev. B 105,165155(2022)],并保留方程式的无存储结构及其时间性缩放。作为数值说明,我们研究了哈伯德纳米群集和附加位点之间的电荷转移,这与物质中离子中和相关的位置。

Real-time nonequilibrium Green functions (NEGF) have been very successful to simulate the dynamics of correlated many-particle systems far from equilibrium. However, NEGF simulations are computationally expensive since the effort scales cubically with the simulation duration. Recently we have introduced the G1--G2 scheme that allows for a dramatic reduction to time-linear scaling [Schlünzen, Phys. Rev. Lett. 124, 076601 (2020); Joost et al., Phys. Rev. B 101, 245101 (2020)]. Here we tackle another problem: the rapid growth of the computational effort with the system size. In many situations where the system of interest is coupled to a bath, to electric contacts or similar macroscopic systems for which a microscopic resolution of the electronic properties is not necessary, efficient simplifications are possible. This is achieved by the introduction of an embedding selfenergy -- a concept that has been successful in standard NEGF simulations. Here, we demonstrate how the embedding concept can be introduced into the G1--G2 scheme, allowing us to drastically accelerate NEGF embedding simulations. The approach is compatible with all advanced selfenergies that can be represented by the G1--G2 scheme [as described in Joost et al., Phys. Rev. B 105, 165155 (2022)] and retains the memory-less structure of the equations and their time linear scaling. As a numerical illustration we investigate the charge transfer between a Hubbard nanocluster and an additional site which is of relevance for the neutralization of ions in matter.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源