论文标题
通过自我监督的分解学习来预测人类流动性
Predicting Human Mobility via Self-supervised Disentanglement Learning
论文作者
论文摘要
深层神经网络最近从大规模的时空轨迹数据中学习人类行为模式和个人偏好方面取得了显着改善。但是,大多数现有研究都集中在融合流动性模式学习的基础序列轨迹的不同语义上,而这些轨迹又融合了依次,这在理解人类的内在运动方面产生了狭窄的观点。此外,与人校验有关的固有的稀疏性和不足的异质协作项目阻碍了人类多样化的周期性规律以及共同利益的潜在利用。在最近的分离学习进展的推动下,在这项研究中,我们提出了一种新型的分离解决方案,称为SSDL,以解决下一个POI预测问题。 SSDL主要试图将潜在的时间不变和时变的因素从大型轨迹数据中分解为不同的潜在空间,从而提供了可解释的观点,以了解人类多样性流动性表示的复杂语义。为了解决数据稀疏问题,我们提出了两种现实的轨迹增强方法,以增强对人类内在周期性和不断变化的意图的理解。此外,我们设计了一种以POI为中心的图形结构,以探索历史签到的基础的异质协作信号。在四个现实世界数据集上进行的广泛实验表明,我们提出的SSDL明显优于最先进的方法 - 例如,在ACC@1上,它的提高最高为8.57%。
Deep neural networks have recently achieved considerable improvements in learning human behavioral patterns and individual preferences from massive spatial-temporal trajectories data. However, most of the existing research concentrates on fusing different semantics underlying sequential trajectories for mobility pattern learning which, in turn, yields a narrow perspective on comprehending human intrinsic motions. In addition, the inherent sparsity and under-explored heterogeneous collaborative items pertaining to human check-ins hinder the potential exploitation of human diverse periodic regularities as well as common interests. Motivated by recent advances in disentanglement learning, in this study we propose a novel disentangled solution called SSDL for tackling the next POI prediction problem. SSDL primarily seeks to disentangle the potential time-invariant and time-varying factors into different latent spaces from massive trajectories data, providing an interpretable view to understand the intricate semantics underlying human diverse mobility representations. To address the data sparsity issue, we present two realistic trajectory augmentation approaches to enhance the understanding of both the human intrinsic periodicity and constantly-changing intents. In addition, we devise a POI-centric graph structure to explore heterogeneous collaborative signals underlying historical check-ins. Extensive experiments conducted on four real-world datasets demonstrate that our proposed SSDL significantly outperforms the state-of-the-art approaches -- for example, it yields up to 8.57% improvements on ACC@1.