论文标题

无分散尼兹尼克方程的点和接触对称性假群

Point- and contact-symmetry pseudogroups of dispersionless Nizhnik equation

论文作者

Boyko, Vyacheslav M., Popovych, Roman O., Vinnichenko, Oleksandra O.

论文摘要

采用原始的基于大型的代数方法的版本,我们计算了无分散(潜在对称)nizhnik方程的点对称性伪群。这是文献中此类的第一个示例,其中无需使用直接方法来完成计算。对于相应的非线性宽松表示和对称尼兹尼克系统的无分散对应物,也进行了类似研究。我们还首先应用了基于大型代数的代数方法的版本,以找到偏微分方程的接触对称(伪对称)组。结果表明,无分散尼兹尼克方程的接触对称性伪群与其点对称性假群的第一延长一致。我们检查了在上述计算过程中自然出现的无分散尼兹尼克方程的最大谎言谎言不变性代数的子代数是否定义了稳定该代数或其第一个延长的差异性。此外,我们将所有三阶偏微分方程构造在三个自变量的变量中,这些变量接受相同的不变性代数。我们还找到了无分散的尼兹尼克方程的一组几何特性,这些方程详尽地定义了它。

Applying an original megaideal-based version of the algebraic method, we compute the point-symmetry pseudogroup of the dispersionless (potential symmetric) Nizhnik equation. This is the first example of this kind in the literature, where there is no need to use the direct method for completing the computation. The analogous studies are also carried out for the corresponding nonlinear Lax representation and the dispersionless counterpart of the symmetric Nizhnik system. We also first apply the megaideal-based version of the algebraic method to find the contact-symmetry (pseudo)group of a partial differential equation. It is shown that the contact-symmetry pseudogroup of the dispersionless Nizhnik equation coincides with the first prolongation of its point-symmetry pseudogroup. We check whether the subalgebras of the maximal Lie invariance algebra of the dispersionless Nizhnik equation that naturally arise in the course of the above computations define the diffeomorphisms stabilizing this algebra or its first prolongation. In addition, we construct all the third-order partial differential equations in three independent variables that admit the same Lie invariance algebra. We also find a set of geometric properties of the dispersionless Nizhnik equation that exhaustively defines it.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源