论文标题
注意差距:模拟与现实之间的差异推动了银河中心多余的解释
Mind the gap: The discrepancy between simulation and reality drives interpretations of the Galactic Center Excess
论文作者
论文摘要
GEV伽玛射线中的银河中心过量(GCE)已经争论了十多年,可能是由于暗物质歼灭或未检测到的点源(例如毫秒脉冲星(MSP))。这项研究研究了银河中心分析中使用的伽马射线排放模型($γ$)如何影响GCE性质的解释。为了解决这个问题,我们基于卷积深度集合网络构建了一个超快速而强大的推理管道。我们使用一组$γ$ EMS探讨了GCE的两个主要竞争假设,并且参数自由增加。我们计算了MSP的DIM人群对GCE的总发光度的分数贡献($ f _ {\ mathrm {src}} $),并分析了其对$γ$ EM的复杂性的依赖性。 For the simplest $γ$EM, we obtain $f_{\mathrm{src}} = 0.10 \pm 0.07$, while the most complex model yields $f_{\mathrm{src}} = 0.79 \pm 0.24.$ In conclusion, we find that the statement about the nature of the GCE (dark matter or not) strongly depends on the assumed $γ$EM. $ f _ {\ mathrm {src}} $的引用结果并未考虑到观察到的伽玛 - 射线天空对所研究的$γ$ em迭代的分布之外。我们使用基于深度学习的一级深度支持向量数据描述网络量化了$γ$ EMS之间的现实差距,这表明所有使用的$γ$ ems都有对现实的差距。我们的研究对以前关于GCE和暗物质的结论的有效性提出了怀疑,并强调了迫切需要解决现实差距,并考虑以前的解释中以前被忽视的“脱离领域”。
The Galactic Center Excess (GCE) in GeV gamma rays has been debated for over a decade, with the possibility that it might be due to dark matter annihilation or undetected point sources such as millisecond pulsars (MSPs). This study investigates how the gamma-ray emission model ($γ$EM) used in Galactic center analyses affects the interpretation of the GCE's nature. To address this issue, we construct an ultra-fast and powerful inference pipeline based on convolutional Deep Ensemble Networks. We explore the two main competing hypotheses for the GCE using a set of $γ$EMs with increasing parametric freedom. We calculate the fractional contribution ($f_{\mathrm{src}}$) of a dim population of MSPs to the total luminosity of the GCE and analyze its dependence on the complexity of the $γ$EM. For the simplest $γ$EM, we obtain $f_{\mathrm{src}} = 0.10 \pm 0.07$, while the most complex model yields $f_{\mathrm{src}} = 0.79 \pm 0.24.$ In conclusion, we find that the statement about the nature of the GCE (dark matter or not) strongly depends on the assumed $γ$EM. The quoted results for $f_{\mathrm{src}}$ do not account for the additional uncertainty arising from the fact that the observed gamma-ray sky is out-of-distribution concerning the investigated $γ$EM iterations. We quantify the reality gap between our $γ$EMs using deep-learning-based One-Class Deep Support Vector Data Description networks, revealing that all employed $γ$EMs have gaps to reality. Our study casts doubt on the validity of previous conclusions regarding the GCE and dark matter, and underscores the urgent need to account for the reality gap and consider previously overlooked ''out of domain'' uncertainties in future interpretations.