论文标题
$ \ Mathbb z_n \ times h $的组决定因素
The group determinants for $\mathbb Z_n \times H$
论文作者
论文摘要
令$ \ mathbb z_n $表示订单$ n $的循环群。我们展示了$ G = \ Mathbb z_n \ times h $的组决定因素可以简单地按照$ h $的组决定因素而写。我们使用它来获取$ \ mathbb z_2 \ times d_8 $的整数组决定因素的完整描述,其中$ d_8 $是第8订单的二二二二进制组,而$ \ mathbb z_2 \ times q_8 $,其中$ q_8 $ q_8 $ q_8 $ q_8 is是订单8的Quaternion Group of 8。
Let $\mathbb Z_n$ denote the cyclic group of order $n$. We show how the group determinant for $G= \mathbb Z_n \times H$ can be simply written in terms of the group determinant for $H$. We use this to get a complete description of the integer group determinants for $\mathbb Z_2 \times D_8$ where $D_8$ is the dihedral group of order 8, and $\mathbb Z_2 \times Q_8$ where $Q_8$ is the quaternion group of order 8.