论文标题

在$ k $ lanks上的拓扑空间

On $k$-ranks of topological spaces

论文作者

Jin, Mengjie, Li, Qingguo

论文摘要

在本文中,介绍了$ k $ - subset系统和$ k $过滤的空间的概念,这为$ d $ spaces,$ s $ well滤波器的空间提供了另一种统一的方法(即,$ \ nathcal {u} _ {u} _ {s} _ {s} $ - 可靠性),并得到了充实的空间。我们证明,存在任何$ t_ {0} $ space的$ k $过滤反射。同时,我们提出了$ k $ -rank的定义,该定义是一个序数,可衡量从$ t_ {0} $ space到$ k $过滤的空间的几个步骤。此外,我们得出的是,对于任何有序$α$,都存在$ t_ {0} $ space,其$ k $ -rank等于$α$。一个即时的推论是,对于任何列出的$α$,存在$ t_ {0} $ space,其$ d $ -rank(分别为$ wf $ -rank)等于$α$。

In this paper, the concepts of $K$-subset systems and $k$-well-filtered spaces are introduced, which provide another uniform approach to $d$-spaces, $s$-well-filtered spaces (i.e., $\mathcal{U}_{S}$-admissibility) and well-filtered spaces. We prove that the $k$-well-filtered reflection of any $T_{0}$ space exists. Meanwhile, we propose the definition of $k$-rank, which is an ordinal that measures how many steps from a $T_{0}$ space to a $k$-well-filtered space. Moreover, we derive that for any ordinal $α$, there exists a $T_{0}$ space whose $k$-rank equals to $α$. One immediate corollary is that for any ordinal $α$, there exists a $T_{0}$ space whose $d$-rank (respectively, $wf$-rank) equals to $α$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源