论文标题
dasecount:域 - 不足的样品效率的无线室内人群通过少量学习来计数
DASECount: Domain-Agnostic Sample-Efficient Wireless Indoor Crowd Counting via Few-shot Learning
论文作者
论文摘要
准确的室内人群计数(ICC)是许多智能家庭/办公应用程序的关键推动力。在本文中,我们提出了一个域 - 不合时宜的和样本效率的无线室内人群计数(Dasecount)框架,鉴于新域中的数据样本非常有限,足以达到可靠的跨域检测准确性。 Dasecount利用了由两个主要阶段组成的几阶段学习(FSL)范式的智慧:源域元训练和目标域元测试。具体而言,在元训练阶段,我们在源域数据集上设计和训练两个单独的卷积神经网络(CNN)模块,以完全捕获与人类活动相关的CSI测量的隐式振幅和相位特征。随后的知识蒸馏过程旨在迭代更新CNN参数,以更好地泛化性能。在元测试阶段,我们使用部分CNN模块从高维输入目标域CSI数据中提取低维特征。借助获得的低维CSI功能,我们甚至可以使用很少的目标域数据样本(例如5-shot样本)来训练轻质逻辑回归(LR)分类器,并获得非常高的跨域ICC准确性。实验结果表明,所提出的DaseCount方法达到了92.68 \%以上,平均为96.37 \%的检测准确性,在各种域设置下计算任务的0-8人数,这显着超过了其他代表性的基准方法。
Accurate indoor crowd counting (ICC) is a key enabler to many smart home/office applications. In this paper, we propose a Domain-Agnostic and Sample-Efficient wireless indoor crowd Counting (DASECount) framework that suffices to attain robust cross-domain detection accuracy given very limited data samples in new domains. DASECount leverages the wisdom of few-shot learning (FSL) paradigm consisting of two major stages: source domain meta training and target domain meta testing. Specifically, in the meta-training stage, we design and train two separate convolutional neural network (CNN) modules on the source domain dataset to fully capture the implicit amplitude and phase features of CSI measurements related to human activities. A subsequent knowledge distillation procedure is designed to iteratively update the CNN parameters for better generalization performance. In the meta-testing stage, we use the partial CNN modules to extract low-dimension features out of the high-dimension input target domain CSI data. With the obtained low-dimension CSI features, we can even use very few shots of target domain data samples (e.g., 5-shot samples) to train a lightweight logistic regression (LR) classifier, and attain very high cross-domain ICC accuracy. Experiment results show that the proposed DASECount method achieves over 92.68\%, and on average 96.37\% detection accuracy in a 0-8 people counting task under various domain setups, which significantly outperforms the other representative benchmark methods considered.