论文标题
让我们增强:一种深入学习的方法
Let's Enhance: A Deep Learning Approach to Extreme Deblurring of Text Images
论文作者
论文摘要
这项工作提出了一种新型的基于学习的基础管道,用于图像过度的逆问题,利用增强和使用合成数据进行预训练。我们的结果是基于我们对最近的赫尔辛基Deblur Challenge 2021的获胜提交的基础,其目标是探索现实数据设置中最先进的Deblurring算法的限制。挑战的任务是消除随机文本的聚焦外图像,从而在下游任务中最大化基于光学识别的得分功能。解决方案的关键步骤是描述模糊过程的物理前向模型的数据驱动估计。这可以实现一系列合成数据,生成成对的地面真相和模糊图像,用于广泛扩大所提供的少量挑战数据。实际去缩合管道由径向透镜失真(由估计的正向模型确定)和U-NET体系结构的近似反转组成,该体系结构是经过训练的端到端。我们的算法是唯一一项通过最困难的挑战水平,达到了70美元以上的$ $ $角色识别精度。我们的发现与以数据为中心的机器学习的范式一致,我们在反问题的背景下证明了它的有效性。除了对我们的方法论的详细介绍外,我们还分析了一系列消融研究中几种设计选择的重要性。我们挑战提交的代码可在https://github.com/theophil-trippe/hdc_tuberlin_version_1中获得。
This work presents a novel deep-learning-based pipeline for the inverse problem of image deblurring, leveraging augmentation and pre-training with synthetic data. Our results build on our winning submission to the recent Helsinki Deblur Challenge 2021, whose goal was to explore the limits of state-of-the-art deblurring algorithms in a real-world data setting. The task of the challenge was to deblur out-of-focus images of random text, thereby in a downstream task, maximizing an optical-character-recognition-based score function. A key step of our solution is the data-driven estimation of the physical forward model describing the blur process. This enables a stream of synthetic data, generating pairs of ground-truth and blurry images on-the-fly, which is used for an extensive augmentation of the small amount of challenge data provided. The actual deblurring pipeline consists of an approximate inversion of the radial lens distortion (determined by the estimated forward model) and a U-Net architecture, which is trained end-to-end. Our algorithm was the only one passing the hardest challenge level, achieving over $70\%$ character recognition accuracy. Our findings are well in line with the paradigm of data-centric machine learning, and we demonstrate its effectiveness in the context of inverse problems. Apart from a detailed presentation of our methodology, we also analyze the importance of several design choices in a series of ablation studies. The code of our challenge submission is available under https://github.com/theophil-trippe/HDC_TUBerlin_version_1.