论文标题
通过kalman滤波从静态原子重量表中估算重力加速度
Estimating gravity acceleration from static atomic gravimeter by Kalman filtering
论文作者
论文摘要
我们介绍了原子重量表的两态模型和相关的卡尔曼递归,以估算原子重量表的重力加速度。我们发现,通过消除白相噪声,卡尔曼估计器在短期内大大提高了估计值的精度。估计值的残余噪声遵循0.13 mugal/\ sqrt {s},最多超过100 s,即使没有地震表校正,在一个样品的测量时间下,在测量时间的测量时间中突出了0.34 mugal的精度。
We present the construction of the two-state model of the atomic gravimeter and the associated Kalman recursion to estimate gravity acceleration from atomic gravimeter. We find the Kalman estimator greatly improve the precision of estimates in short term by removing the white phase noise. The residual noise of the estimates follows 0.13 muGal/\sqrt{s} for up to more than 100 s and highlights a precision of 0.34 muGal at the measuring time of a single sample, even with no seismometer correction.