论文标题
知道几个镜头显微镜图像细胞分割的标签
Knowing What to Label for Few Shot Microscopy Image Cell Segmentation
论文作者
论文摘要
在显微镜图像细胞分割中,通常在源数据上训练深层神经网络,其中包含不同类型的显微镜图像,然后使用包括一些随机选择和注释的训练目标图像的支持集对其进行微调。在本文中,我们认为将随机选择未标记的训练目标图像被注释并包含在支持集中可能无法实现有效的微调过程,因此我们提出了一种新方法来优化此图像选择过程。我们的方法涉及一个新的评分功能,以找到信息丰富的未标记目标图像。特别是,我们建议衡量目标图像对特定数据增强的模型预测中的一致性。但是,我们观察到,经源数据集训练的模型无法可靠地评估目标图像的一致性。为了减轻这个问题,我们提出了新颖的自我监督借口任务来计算未标记的目标图像得分。最后,将一致性得分最小的前几个图像添加到Oracle(即专家)注释的支持集中,然后用来将模型调整为目标图像。在涉及五种不同类型的细胞图像分割的评估中,与随机选择方法以及其他选择方法相比,我们在几个目标测试集上展示了有希望的结果,例如香农的熵和蒙特 - 卡洛辍学。
In microscopy image cell segmentation, it is common to train a deep neural network on source data, containing different types of microscopy images, and then fine-tune it using a support set comprising a few randomly selected and annotated training target images. In this paper, we argue that the random selection of unlabelled training target images to be annotated and included in the support set may not enable an effective fine-tuning process, so we propose a new approach to optimise this image selection process. Our approach involves a new scoring function to find informative unlabelled target images. In particular, we propose to measure the consistency in the model predictions on target images against specific data augmentations. However, we observe that the model trained with source datasets does not reliably evaluate consistency on target images. To alleviate this problem, we propose novel self-supervised pretext tasks to compute the scores of unlabelled target images. Finally, the top few images with the least consistency scores are added to the support set for oracle (i.e., expert) annotation and later used to fine-tune the model to the target images. In our evaluations that involve the segmentation of five different types of cell images, we demonstrate promising results on several target test sets compared to the random selection approach as well as other selection approaches, such as Shannon's entropy and Monte-Carlo dropout.