论文标题
解决稀bose-Einstein冷凝物中的声音传播难题
Resolving the puzzle of sound propagation in a dilute Bose-Einstein condensate
论文作者
论文摘要
提出了一个稀释的Bose-Einstein凝结物的统一模型,将对数和毛皮的毛线和毛皮型非线性术语结合在波方程中,其中Gross-Pitaevskii术语描述了两体相互作用,如标准扰动理论所暗示的;虽然对数项本质上是非扰动性的,并考虑了量子真空效应。该模型被证明与自现在经典作品和合作者经典作品的冷钠原子的冷凝物中的声音中有着极好的一致性。数据还使我们能够对统一模型的两个参数放置约束,这些参数描述了对数和毛taevskii项的优势。此外,我们建议使用猜想的吸引力 - 抑制 - 抑制转变在冷凝物内部内部的猜想吸引 - 抑制转变,来限制第三个参数(模型对数部分的特征密度尺度)的值。
A unified model of a dilute Bose-Einstein condensate is proposed, combining of the logarithmic and Gross-Pitaevskii nonlinear terms in a wave equation, where the Gross-Pitaevskii term describes two-body interactions, as suggested by standard perturbation theory; while the logarithmic term is essentially non-perturbative, and takes into account quantum vacuum effects. The model is shown to have excellent agreement with sound propagation data in the condensate of cold sodium atoms known since the now classic works by Andrews and collaborators. The data also allowed us to place constraints on two of the unified model's parameters, which describe the strengths of the logarithmic and Gross-Pitaevskii terms. Additionally, we suggest an experiment constraining the value of the third parameter (the characteristic density scale of the logarithmic part of the model), using the conjectured attraction-repulsion transition of many-body interaction inside the condensate.