论文标题
长尾多标签文本分类的成对实例关系增强
Pairwise Instance Relation Augmentation for Long-tailed Multi-label Text Classification
论文作者
论文摘要
多标签文本分类(MLTC)是自然语言处理的关键任务之一。它旨在将多个目标标签分配给一个文档。由于标签的普及不平衡,在大多数情况下,每个标签的文档数量遵循长尾巴的分布。与数据筛分标签学习分类器相比,学习分类器要比数据富的头标签更具挑战性。主要原因是头部标签通常具有足够的信息,例如,较大的类内多样性,而尾标则没有。作为回应,我们提出了一个成对实例关系增强网络(PIRAN),以增强尾部标签文档,以平衡尾标和头标签。 Piran由一个关系收集器和实例生成器组成。前者的目的是从头标签中提取文档成对关系。将这些关系视为扰动,后者试图在有限的给定尾标实例周围生成新的文档实例。同时,两个正规化器(多样性和一致性)旨在限制生成过程。一致性调查器鼓励尾标标签的差异接近头标签,并进一步平衡整个数据集。并且多样性调查器确保生成的实例具有多样性并避免产生冗余实例。三个基准数据集的广泛实验结果表明,Piran始终超过SOTA方法,并显着提高了尾标标签的性能。
Multi-label text classification (MLTC) is one of the key tasks in natural language processing. It aims to assign multiple target labels to one document. Due to the uneven popularity of labels, the number of documents per label follows a long-tailed distribution in most cases. It is much more challenging to learn classifiers for data-scarce tail labels than for data-rich head labels. The main reason is that head labels usually have sufficient information, e.g., a large intra-class diversity, while tail labels do not. In response, we propose a Pairwise Instance Relation Augmentation Network (PIRAN) to augment tailed-label documents for balancing tail labels and head labels. PIRAN consists of a relation collector and an instance generator. The former aims to extract the document pairwise relations from head labels. Taking these relations as perturbations, the latter tries to generate new document instances in high-level feature space around the limited given tailed-label instances. Meanwhile, two regularizers (diversity and consistency) are designed to constrain the generation process. The consistency-regularizer encourages the variance of tail labels to be close to head labels and further balances the whole datasets. And diversity-regularizer makes sure the generated instances have diversity and avoids generating redundant instances. Extensive experimental results on three benchmark datasets demonstrate that PIRAN consistently outperforms the SOTA methods, and dramatically improves the performance of tail labels.