论文标题
非双线性的无双向性动力学
Nonlinear Electrodynamics without Birefringence
论文作者
论文摘要
发现了非线性电动力学的无生育条件的所有溶液。除了已知的出生犯罪和Plebanski案件外,我们还发现了一个``反向出生式犯罪''案,该案件对Plebanski有限制,并且是``极端出生的罪犯''案,它作为Lagrangian的约束产生。只有出生的污染物具有弱场极限,并且只有出生的污染物和极端出生的Infeld避免在恒定的电磁背景下进行超照式传播,但是所有情况都具有保形的强场极限,与Bialynicki-Birula发现的强场上的强场限制相吻合。
All solutions of the no-birefringence conditions for nonlinear electrodynamics are found. In addition to the known Born-Infeld and Plebanski cases, we find a ``reverse Born-Infeld'' case, which has a limit to Plebanski, and an ``extreme-Born-Infeld'' case, which arises as a Lagrangian constraint. Only Born-Infeld has a weak-field limit, and only Born-Infeld and extreme-Born Infeld avoid superluminal propagation in constant electromagnetic backgrounds, but all cases have a conformal strong-field limit that coincides with the strong-field limit of Born-Infeld found by Bialynicki-Birula.