论文标题

单阶段多置虚拟试验

Single Stage Multi-Pose Virtual Try-On

论文作者

He, Sen, Song, Yi-Zhe, Xiang, Tao

论文摘要

多姿势虚拟试验(MPVton)旨在将目标服装适合目标姿势的人。与适合服装但保持姿势不变的传统虚拟试验(VTON)相比,MPVton提供了更好的尝试体验,但由于双重服装和姿势编辑目标,也更具挑战性。现有的MPVTON方法采用了包括三个不相交模块的管道,包括目标语义布局预测模块,粗糙的试用图像生成器和细化的试用图像生成器。这些模型是分别训练的,导致了次优的模型训练和结果不令人满意的结果。在本文中,我们提出了一个新颖的MPVton单阶段模型。我们模型的关键是平行流量估计模块,该模块可以预测在目标姿势下的人和服装图像的流场。随后,预测的流程被用来扭曲人物的外观特征图和服装图像以构建样式图。然后,该地图用于调节目标姿势的特征映射,以生成目标尝试图像。通过平行流量估计设计,我们的模型可以在一个阶段进行端到端训练,并且在计算上更有效,从而在现有MPVton基准测试中产生了新的SOTA性能。我们进一步介绍了多任务培训,并证明我们的模型也可以应用于传统的VTON和姿势转移任务,并在这两个任务上实现与SOTA专业模型的可比性能。

Multi-pose virtual try-on (MPVTON) aims to fit a target garment onto a person at a target pose. Compared to traditional virtual try-on (VTON) that fits the garment but keeps the pose unchanged, MPVTON provides a better try-on experience, but is also more challenging due to the dual garment and pose editing objectives. Existing MPVTON methods adopt a pipeline comprising three disjoint modules including a target semantic layout prediction module, a coarse try-on image generator and a refinement try-on image generator. These models are trained separately, leading to sub-optimal model training and unsatisfactory results. In this paper, we propose a novel single stage model for MPVTON. Key to our model is a parallel flow estimation module that predicts the flow fields for both person and garment images conditioned on the target pose. The predicted flows are subsequently used to warp the appearance feature maps of the person and the garment images to construct a style map. The map is then used to modulate the target pose's feature map for target try-on image generation. With the parallel flow estimation design, our model can be trained end-to-end in a single stage and is more computationally efficient, resulting in new SOTA performance on existing MPVTON benchmarks. We further introduce multi-task training and demonstrate that our model can also be applied for traditional VTON and pose transfer tasks and achieve comparable performance to SOTA specialized models on both tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源