论文标题
在光 - 物质相互作用中的拓扑转换的节点和自旋绕组:\\各向异性量子狂犬模型作为天生的抽象艺术家
Nodes and Spin Windings for Topological Transitions in Light-Matter Interactions: \\ Anisotropic Quantum Rabi Model as a Born Abstract Artist
论文作者
论文摘要
通过提取不同级别的拓扑信息,新的光散发出各向异性量子狂犬模型(QRM)的能量,这是在超强耦合中与不可或缺的反旋转项的光结合相互作用的基本模型。除了在差距缩小时进行的常规拓扑转换(TTS)外,包括不同能级的特定通用的大量非常规的TT还通过跟踪波函数淋巴结来揭示了基础抗突出的基础抗突出。另一方面,发现节点与自旋绕组具有对应关系,这不仅赋予节点在支持单量度TTS时具有更明确的拓扑特征,而且还可以将拓扑信息从物理上检测到。此外,隐藏的小旋转结的过渡是针对基态的,而在激发态,包括无与伦比的节点数和旋转绕组数字(包括自旋节点数字)中,更多的自旋结转变出现。令人惊讶的是,自旋绕组经常与抽象艺术作品具有很高的精神相似性,这表明各向异性QRM可能是物理模型的毕加索。这表明艺术正在加入数学和物理学之间的对话,这是由揭示QRM可集成性的里程碑式工作引发的。
By extracting different levels of topological information a new light is shed on the energy spectrum of the anisotropic quantum Rabi model (QRM) which is the fundamental model of light-matter interactions with indispensable counter-rotating terms in ultra-strong couplings. Besides conventional topological transitions (TTs) at gap closing, abundant unconventional TTs including a particular one universal for different energy levels are unveiled underlying level anticrossings without gap closing by tracking the wave-function nodes. On the other hand, it is found that the nodes have a correspondence to spin windings, which not only endows the nodes a more explicit topological character in supporting single-qubit TTs but also turns the topological information physically detectable. Furthermore, hidden small-spin-knot transitions are exposed for the ground state, while more kinds of spin-knot transitions emerge in excited states including unmatched node numbers and spin winding numbers. As a surprise, frequently the spin windings produce portraits in high spiritual similarity with abstract artistic works, which demonstrates that the anisotropic QRM may be the Picasso of physical models. This signifies that art is joining the dialogue between mathematics and physics which was triggered by the milestone work of revealing integrability of the QRM.