论文标题
非线性系统的数据驱动反馈线性化具有零动力学中的周期性轨道
Data-Driven Feedback Linearization of Nonlinear Systems with Periodic Orbits in the Zero-Dynamics
论文作者
论文摘要
在本文中,我们介绍了具有零动力学中周期性轨道的非线性系统的数据驱动反馈线性化。对于数据驱动的控制设计,这种情况是具有挑战性的,因为离散化内部动力学的高阶项似乎是对正常形式的可控子系统的干扰输入。我们的设计由两个部分组成:基于数据驱动的反馈线性化控制器和两部分的估计器,可以以非线性系统的正常形式重建未知的非线性项。我们研究了子系统之间在闭环非线性系统的正常形式之间耦合的影响,并得出结论,这种耦合的存在阻止了可控状态的渐近收敛性。我们还表明,可控状态中的估计误差随采样时间线性缩放。最后,我们提出了对所提出的数据驱动反馈线性化的基于仿真的验证。
In this article, we present data-driven feedback linearization for nonlinear systems with periodic orbits in the zero-dynamics. This scenario is challenging for data-driven control design because the higher order terms of the internal dynamics in the discretization appear as disturbance inputs to the controllable subsystem of the normal form. Our design consists of two parts: a data-driven feedback linearization based controller and a two-part estimator that can reconstruct the unknown nonlinear terms in the normal form of a nonlinear system. We investigate the effects of coupling between the subsystems in the normal form of the closed-loop nonlinear system and conclude that the presence of such coupling prevents asymptotic convergence of the controllable states. We also show that the estimation error in the controllable states scales linearly with the sampling time. Finally, we present a simulation based validation of the proposed data-driven feedback linearization.