论文标题
磁性材料的一般时间反转的神经网络潜力
General time-reversal equivariant neural network potential for magnetic materials
论文作者
论文摘要
这项研究介绍了时间反转E(3) - 等效性神经网络和Spingnn ++框架,用于构建磁系统的综合原子间潜力,包括旋转轨道耦合和非共线磁矩。 spingnn ++将多项旋转的神经网络与明确的自旋式术语相结合,包括海森堡,dzyaloshinskii-moriya,kitaev,kitaev,单离子各向异性和生物quadratic互动,以及使用高度逆向旋转式互动的时间逆向旋转式互动(使用高度旋转型旋转式互动)。为了验证spingnn ++,将一个复杂的磁模型数据集作为基准引入,并用于证明其功能。 Spingnn ++提供了单层CRI $ _3 $和CRTE $ _2 $中复杂的自旋晶格耦合的准确描述,从而达到了子MEV错误。重要的是,它促进了大规模平行的自旋晶格动力学,从而实现了相关特性的探索,包括磁接地态和相变。值得注意的是,Spingnn ++将新的铁磁状态鉴定为单层CRTE2的地面磁态,从而丰富其相图并提供更深入的见解,以了解各种实验中观察到的独特的磁信号。
This study introduces time-reversal E(3)-equivariant neural network and SpinGNN++ framework for constructing a comprehensive interatomic potential for magnetic systems, encompassing spin-orbit coupling and noncollinear magnetic moments. SpinGNN++ integrates multitask spin equivariant neural network with explicit spin-lattice terms, including Heisenberg, Dzyaloshinskii-Moriya, Kitaev, single-ion anisotropy, and biquadratic interactions, and employs time-reversal equivariant neural network to learn high-order spin-lattice interactions using time-reversal E(3)-equivariant convolutions. To validate SpinGNN++, a complex magnetic model dataset is introduced as a benchmark and employed to demonstrate its capabilities. SpinGNN++ provides accurate descriptions of the complex spin-lattice coupling in monolayer CrI$_3$ and CrTe$_2$, achieving sub-meV errors. Importantly, it facilitates large-scale parallel spin-lattice dynamics, thereby enabling the exploration of associated properties, including the magnetic ground state and phase transition. Remarkably, SpinGNN++ identifies a new ferrimagnetic state as the ground magnetic state for monolayer CrTe2, thereby enriching its phase diagram and providing deeper insights into the distinct magnetic signals observed in various experiments.