论文标题
Houdayer算法:概述,扩展和应用程序
The Houdayer Algorithm: Overview, Extensions, and Applications
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
The study of spin systems with disorder and frustration is known to be a computationally hard task. Standard heuristics developed for optimizing and sampling from general Ising Hamiltonians tend to produce correlated solutions due to their locality, resulting in a suboptimal exploration of the search space. To mitigate these effects, cluster Monte-Carlo methods are often employed as they provide ways to perform non-local transformations on the system. In this work, we investigate the Houdayer algorithm, a cluster Monte-Carlo method with small numerical overhead which improves the exploration of configurations by preserving the energy of the system. We propose a generalization capable of reaching exponentially many configurations at the same energy, while offering a high level of adaptability to ensure that no biased choice is made. We discuss its applicability in various contexts, including Markov chain Monte-Carlo sampling and as part of a genetic algorithm. The performance of our generalization in these settings is illustrated by sampling for the Ising model across different graph connectivities and by solving instances of well-known binary optimization problems. We expect our results to be of theoretical and practical relevance in the study of spin glasses but also more broadly in discrete optimization, where a multitude of problems follow the structure of Ising spin systems.