论文标题

具有时空图神经网络的预测未观察到的节点状态

Forecasting Unobserved Node States with spatio-temporal Graph Neural Networks

论文作者

Roth, Andreas, Liebig, Thomas

论文摘要

预测传感器的未来状态是解决天气预测,路线规划以及其他许多其他传感器网络等任务的关键。但是,传感器的完整空间覆盖通常是不可用的,并且由于部署和维护过程中预算和其他资源的限制,实际上是不可行的。当前使用机器学习的现有方法仅限于观察到数据的空间位置,从而导致下游任务的局限性。受到最新的图形神经网络激增的启发,我们研究了这些信息是否还可以预测没有传感器的位置状态。为此,我们开发了一个框架,即指定的预测未观察到的节点状态(娱乐),该框架允许根据时空相关性和图形归纳偏置在完全未观察到的位置进行预测状态。乐趣是仅在观察到的数据上优化模型的蓝图,并在测试阶段展示了在完全未观察到的位置上预测状态的良好概括能力。我们的框架可以与任何时空图神经网络结合使用,该网络可以通过使用网络的图形结构来利用与周围观察到的位置的时空相关性。我们所采用的模型以先前的模型为基础,还允许我们利用有关感兴趣位置的先验知识,例如道路类型。我们对模拟和现实世界数据集的经验评估表明,图形神经网络非常适合此任务。

Forecasting future states of sensors is key to solving tasks like weather prediction, route planning, and many others when dealing with networks of sensors. But complete spatial coverage of sensors is generally unavailable and would practically be infeasible due to limitations in budget and other resources during deployment and maintenance. Currently existing approaches using machine learning are limited to the spatial locations where data was observed, causing limitations to downstream tasks. Inspired by the recent surge of Graph Neural Networks for spatio-temporal data processing, we investigate whether these can also forecast the state of locations with no sensors available. For this purpose, we develop a framework, named Forecasting Unobserved Node States (FUNS), that allows forecasting the state at entirely unobserved locations based on spatio-temporal correlations and the graph inductive bias. FUNS serves as a blueprint for optimizing models only on observed data and demonstrates good generalization capabilities for predicting the state at entirely unobserved locations during the testing stage. Our framework can be combined with any spatio-temporal Graph Neural Network, that exploits spatio-temporal correlations with surrounding observed locations by using the network's graph structure. Our employed model builds on a previous model by also allowing us to exploit prior knowledge about locations of interest, e.g. the road type. Our empirical evaluation of both simulated and real-world datasets demonstrates that Graph Neural Networks are well-suited for this task.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源