论文标题

基准测试边缘计算设备,用于使用加速对象检测单镜头多伯克斯深度学习模型检测葡萄和树干检测

Benchmarking Edge Computing Devices for Grape Bunches and Trunks Detection using Accelerated Object Detection Single Shot MultiBox Deep Learning Models

论文作者

Magalhães, Sandro Costa, Santos, Filipe Neves, Machado, Pedro, Moreira, António Paulo, Dias, Jorge

论文摘要

目的:视觉感知使机器人能够感知环境。视觉数据是使用通常廉价且需要强大设备来实时处理视觉数据的计算机视觉算法处理的,这对于能量有限的开放式机器人是不可行的。这项工作基于实时检测不同异质平台的性能。这项研究基准了三个架构:嵌入式GPU - 图形处理单元(例如NVIDIA JETSON NANO 2 GB和4 GB,以及NVIDIA JETSON TX2),TPU-张量处理单元(例如Coral Dev Board TPU)和DPU-DPU- dpu- dpu-dep-dep-Learning Processor Bast(例如Amd-ZCILIN- amd-ZCILIN- amd-d-XCI), KRIA KV260入门套件)。方法:作者使用天然葡萄藤数据集使用了视网膜Resnet-50微调。经过训练的模型进行转换并编译以特定于目标的硬件格式以提高执行效率。结论和结果:根据评估指标和效率(推理时间)的性能评估平台。图形处理单元(GPU)是最慢的设备,以3 fps至5 fps运行,而现场可编程门阵列(FPGAS)是最快的设备,以14 fps至25 fps运行。张量处理单元(TPU)的效率无关紧要,类似于Nvidia Jetson TX2。 TPU和GPU是最有效的,耗时约5W。跨设备的评估指标中的性能差异无关紧要,F1约为70%,平均平均精度(MAP)约为60%。

Purpose: Visual perception enables robots to perceive the environment. Visual data is processed using computer vision algorithms that are usually time-expensive and require powerful devices to process the visual data in real-time, which is unfeasible for open-field robots with limited energy. This work benchmarks the performance of different heterogeneous platforms for object detection in real-time. This research benchmarks three architectures: embedded GPU -- Graphical Processing Units (such as NVIDIA Jetson Nano 2 GB and 4 GB, and NVIDIA Jetson TX2), TPU -- Tensor Processing Unit (such as Coral Dev Board TPU), and DPU -- Deep Learning Processor Unit (such as in AMD-Xilinx ZCU104 Development Board, and AMD-Xilinx Kria KV260 Starter Kit). Method: The authors used the RetinaNet ResNet-50 fine-tuned using the natural VineSet dataset. After the trained model was converted and compiled for target-specific hardware formats to improve the execution efficiency. Conclusions and Results: The platforms were assessed in terms of performance of the evaluation metrics and efficiency (time of inference). Graphical Processing Units (GPUs) were the slowest devices, running at 3 FPS to 5 FPS, and Field Programmable Gate Arrays (FPGAs) were the fastest devices, running at 14 FPS to 25 FPS. The efficiency of the Tensor Processing Unit (TPU) is irrelevant and similar to NVIDIA Jetson TX2. TPU and GPU are the most power-efficient, consuming about 5W. The performance differences, in the evaluation metrics, across devices are irrelevant and have an F1 of about 70 % and mean Average Precision (mAP) of about 60 %.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源