论文标题
事件传播序列的图形正规点过程模型
A Graph Regularized Point Process Model For Event Propagation Sequence
论文作者
论文摘要
点过程是以不规则间隔发生建模事件序列的主要范式。在本文中,我们旨在建模图中事件传播的潜在动力学,其中事件序列在有向的加权图中传播,其节点代表事件标记(例如事件类型)。大多数现有作品仅考虑将顺序事件历史记录编码为事件表示形式,并忽略了潜在图形结构中的信息。除此之外,它们还遭受了模型的解释性差,即未能发现各种节点的因果影响。为了解决这些问题,我们提出了一个可以分解为以下图的图表正则点过程(GRPP):1)一个图形传播模型,该模型表征了跨节点与邻居的事件相互作用,并有能力学习节点表示; 2)一个时间的细心强度模型,其激发和过去事件中过去事件的时间衰减因子是通过节点嵌入的上下文化构建的。此外,通过应用图形正则化方法,GRPP通过发现节点之间的影响力强度来提供模型的解释性。各种数据集上的数值实验表明,在传播时间和节点预测中,GRPP的表现都超过了现有的模型。
Point process is the dominant paradigm for modeling event sequences occurring at irregular intervals. In this paper we aim at modeling latent dynamics of event propagation in graph, where the event sequence propagates in a directed weighted graph whose nodes represent event marks (e.g., event types). Most existing works have only considered encoding sequential event history into event representation and ignored the information from the latent graph structure. Besides they also suffer from poor model explainability, i.e., failing to uncover causal influence across a wide variety of nodes. To address these problems, we propose a Graph Regularized Point Process (GRPP) that can be decomposed into: 1) a graph propagation model that characterizes the event interactions across nodes with neighbors and inductively learns node representations; 2) a temporal attentive intensity model, whose excitation and time decay factors of past events on the current event are constructed via the contextualization of the node embedding. Moreover, by applying a graph regularization method, GRPP provides model interpretability by uncovering influence strengths between nodes. Numerical experiments on various datasets show that GRPP outperforms existing models on both the propagation time and node prediction by notable margins.