论文标题

重建和分类SDSS DR16星系光谱与机器学习和降低算法

Reconstructing and Classifying SDSS DR16 Galaxy Spectra with Machine-Learning and Dimensionality Reduction Algorithms

论文作者

Pat, Felix, Juneau, Stéphanie, Böhm, Vanessa, Pucha, Ragadeepika, Kim, A. G., Bolton, A. S., Lepart, Cleo, Green, Dylan, Myers, Adam D.

论文摘要

来自大型宇宙调查的星系和类星体的光谱用于测量红移和推断距离。他们还拥有有关这些天文对象的内在特性的信息。但是,由于大量的自由度,各种噪声来源以及引起相似光谱特征的物理参数之间的变性,它们的物理解释可能具有挑战性。为了深入了解这些脱节,我们将两个无监督的机器学习框架应用于Sloan Digital Sky Survey Data Release 16(SDSS DR16)的样本中。第一个框架是概率自动编码器(PAE),这是一个两阶段的深度学习框架,由数据压缩阶段从1000个元素到10个参数和密度估计阶段组成。第二个框架是统一的歧管近似和投影(UMAP),我们将其应用于未压缩和压缩数据。在压缩数据UMAP的跨区域进行探索,我们构建了堆叠光谱的序列,该序列显示了从具有狭窄发射线和蓝色光谱的星形星系逐渐过渡到具有吸收线和红色光谱的被动星系。专注于类星体产生的宽发射线的星系,我们发现了一个由宇宙灰尘引起的遮挡水平变化的序列。我们在这里提出的实验为神经网络的未来应用和降低算法的未来应用,用于大型天文学调查。

Optical spectra of galaxies and quasars from large cosmological surveys are used to measure redshifts and infer distances. They are also rich with information on the intrinsic properties of these astronomical objects. However, their physical interpretation can be challenging due to the substantial number of degrees of freedom, various sources of noise, and degeneracies between physical parameters that cause similar spectral characteristics. To gain deeper insights into these degeneracies, we apply two unsupervised machine learning frameworks to a sample from the Sloan Digital Sky Survey data release 16 (SDSS DR16). The first framework is a Probabilistic Auto-Encoder (PAE), a two-stage deep learning framework consisting of a data compression stage from 1000 elements to 10 parameters and a density estimation stage. The second framework is a Uniform Manifold Approximation and Projection (UMAP), which we apply to both the uncompressed and compressed data. Exploring across regions on the compressed data UMAP, we construct sequences of stacked spectra which show a gradual transition from star-forming galaxies with narrow emission lines and blue spectra to passive galaxies with absorption lines and red spectra. Focusing on galaxies with broad emission lines produced by quasars, we find a sequence with varying levels of obscuration caused by cosmic dust. The experiments we present here inform future applications of neural networks and dimensionality reduction algorithms for large astronomical spectroscopic surveys.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源