论文标题
3D介电和等离子纳米ant的光热和热光效应
Photothermal and Thermo-optical Effects in 3D Arrays of Dielectric and Plasmonic Nanoantennas
论文作者
论文摘要
热态素,即光热效应在光学纳米antennas中的研究,最近引起了人们日益增长的兴趣。尽管热质结构可实现广泛的应用,从成像和光荧光设备到医疗和光化学系统,介电纳米antennas为热光调制和可重新配置的变质带开了新的机会。但是,计算大量纳米ant阵列中的光热和热光效应仍然是一个挑战。在这项工作中,我们实施了一种快速的数值方法,以计算嵌入均匀介质中的光天线的多维阵列的温度升高,涉及自加热,集体加热以及热光效应。特别是,我们在不到1小时内的3D网络中证明了3D网络中的温度计算。有趣的是,通过明确考虑离散纳米颗粒对光衰减和光热转化的作用,该方法可以优化3D阵列中的复杂温度曲线。重要的是,我们首次计算了单个纳米反胶以外的热光效应的影响。我们的结果表明,集体加热贡献在硅和金纳米球的多维阵列中扩大了这些影响,这突出了在光热计算中考虑它们的重要性。总体而言,提出的方法为光学纳米antennas阵列的复杂光热效应的快速评估开辟了新的机会,从而支持了晚期热态功能的发展。
Thermonanophotonics, i.e. the study of photothermal effects in optical nanoantennas, has recently attracted growing interest. While thermoplasmonic structures enable a broad range of applications, from imaging and optofluidics devices to medical and photochemical systems, dielectric nanoantennas open new opportunities for thermo-optical modulation and reconfigurable metasurfaces. However, computing both photo-thermal and thermo-optical effects in large arrays of nanoantennas remains a challenge. In this work, we implement a fast numerical method to compute the temperature increase of multi-dimensional arrays of optical antennas embedded in a uniform medium, accounting for self-heating, collective heating as well as thermo-optical effects. In particular, we demonstrate scalable computation of temperature in 3D networks with $10^5$ particles in less than 1 hour. Interestingly, by explicitly considering the role of discrete nanoparticles on light attenuation and photothermal conversion, this approach enables the optimization of complex temperature profiles in 3D arrays. Importantly, we compute for the first time the impact of thermo-optical effects beyond the single nanoantenna. Our results show that collective heating contributions amplify these effects in multi-dimensional arrays of both Silicon and Gold nanospheres, highlighting the importance of considering them in photothermal calculations. Overall, the proposed method opens new opportunities for the rapid assessment of complex photothermal effects in arrays of optical nanoantennas, supporting the development of advanced thermonanophotonic functionalities.