论文标题
通过累积扩展方法表征原子阵列中的超级动力学
Characterizing superradiant dynamics in atomic arrays via a cumulant expansion approach
论文作者
论文摘要
订购的原子阵列,具有子波长度间距的集体发光。对于完全倒置的原子阵列,这会导致初始的辐射爆发,并在初始时间的原子之间快速积累。基于运动方程的累积扩展,我们得出了发射特性的精确分析表达式,并数值分析了整个多体问题,从而导致了前所未有的系统尺寸的集体衰减过程,最多几百个原子。我们基准了累积扩展方法,并表明它正确捕获了导致超赞的合作动力。对于完全倒置的阵列,这使我们能够以粒子数提取超级峰的缩放。对于在原子之间没有相干性共享的部分激发阵列,我们还确定了在一维几何形状中出现超高产生所需的临界数量的激发数。此外,在非单元填充和位置障碍的情况下,我们研究了超高级的鲁棒性。
Ordered atomic arrays with subwavelength lattice spacing emit light collectively. For fully inverted atomic arrays, this results in an initial burst of radiation and a fast build up of coherences between the atoms at initial times. Based on a cumulant expansion of the equations of motion, we derive exact analytical expressions for the emission properties and numerically analyze the full many-body problem resulting in the collective decay process for unprecedented system sizes of up to a few hundred atoms. We benchmark the cumulant expansion approach and show that it correctly captures the cooperative dynamics resulting in superradiance. For fully inverted arrays, this allows us to extract the scaling of the superradiant peak with particle number. For partially excited arrays where no coherences are shared among atoms, we also determine the critical number of excitations required for the emergence of superradiance in one- and two-dimensional geometries. In addition, we study the robustness of superradiance in the case of non-unit filling and position disorder.