论文标题
连续功能在自由代数理论的最终共卷中发挥作用
Continuous Functions on Final Comodels of Free Algebraic Theories
论文作者
论文摘要
在2009年,Ghani,Hancock和Pattinson给出了类似树的代表流处理器$ a^{\ Mathbb {n}}} \ Rightarrow B^{\ Mathbb {n}} $。在2021年,加纳(Garner)表明,可以根据代数理论和comodels建立这种表示形式:无限流$ a^{\ mathbb {n}} $是代数理论的最终综合理论,$ a $ a $ a $ a $ a $ valueD输入$ \ mathbb {t} t} _a $ and sert of serm of Semtors of serm $ \ mathit {top}(a^{\ m athbb {n}},b^{\ mathbb {n}}} $可以看作是最终$ \ mathbb {t} _a $ - $ \ $ \ mathbb {t} t} _b $ -bimodel。在本文中,我们将Garner的结果推广到自由代数理论的情况下。
In 2009, Ghani, Hancock and Pattinson gave a tree-like representation of stream processors $A^{\mathbb{N}} \rightarrow B^{\mathbb{N}}$. In 2021, Garner showed that this representation can be established in terms of algebraic theory and comodels: the set of infinite streams $A^{\mathbb{N}}$ is the final comodel of the algebraic theory of $A$-valued input $\mathbb{T}_A$ and the set of stream processors $\mathit{Top}(A^{\mathbb{N}},B^{\mathbb{N}})$ can be seen as the final $\mathbb{T}_A$-$\mathbb{T}_B$-bimodel. In this paper, we generalize Garner's results to the case of free algebraic theories.