论文标题
咖啡干燥模式的统计分析
Statistical analysis of the drying pattern of coffee
论文作者
论文摘要
在这项研究中,我们实验研究了带有和不含糖的咖啡的干燥图案液滴。我们统计分析污渍干燥后形成的粗糙表面。糖的量由质量$ m $控制。随着咖啡环的形成,我们在系统中讨论了Marangoni效应,并分析了裂纹的统计数据。对于足够大的$ m $值,指数可以使用高斯免费字段(gff)的指数(循环分形尺寸$ \ frac {3} {2} $,loop and loop and gyyration and Gyration Radius分配指数$τ_l= \ frac {7} {7} {3} {3} {3} $和$τ_r= 3 $ = 3 $)。使用多重分析(MA)进行干燥模式的质量构型,我们从数值上表明,对于没有糖的情况,质量分裂尺寸为$ 1.76 \ pm 0.04 $,这会降低糖的增加。这是通过与接触角分析一致的一致的事实来解释的:液滴变得更加亲水,导致更稀疏的空间模式。
In this study, we experimentally study the dried pattern droplets of coffee with and without sugar. We statistically analyze the rough surface formed after the stain becomes dried. The amount of sugar is controlled by the mass $m$. Along with the formation of the coffee ring, we discuss the Marangoni effect, in the system, and also analyzed the statistics of the cracks. For large enough $m$ values, the exponents approach to the ones for the Gaussian free field (GFF) (the loop fractal dimension $\frac{3}{2}$, loop and gyration radius distribution exponents $τ_l=\frac{7}{3}$ and $τ_r=3$ respectively). Using the multifractal analysis (MA) for the mass configuration of the dried pattern, we numerically show that, the mass-fractal dimension is $1.76\pm 0.04$ for the case without sugar, which decreases increasing the sugar. This is explained by the fact that the droplet becomes more hydrophilic, resulting in more sparse spatial patterns, in agreement compatible with the contact angle analysis.