论文标题
使用光谱法中动力学捕获离子模式(TIM)湍流的全局线性稳定性分析(TIM)湍流
Global linear stability analysis of kinetic Trapped Ion Mode (TIM) turbulence in tokamak plasma using spectral method
论文作者
论文摘要
被困的离子模式(TIM)属于离子温度梯度(ITG)模式的家族,这是Tokamak等离子体中离子尺度上热湍流转运的重要成分之一。正确估计其线性增长率以了解其对离子级湍流运输的影响至关重要。进行了对捕获粒子模式的减少陀螺动力学模型的全局线性分析,并提出了一种光谱方法来解决分散关系。重要的是,在线性分析中考虑了粒子漂移速度的径向轮廓,即通过考虑在准中性方程和平衡陀螺仪平衡平均平均平均平均分布函数F_ {eq}中的磁通量ψ依赖性。使用这种光谱方法,研究了在不同温度谱和捕获离子的进动频率的情况下的线性生长速率,其近似于恒定的哈密顿量和精确的ψ依赖平衡的哈密顿量。生长率取决于温度κ_{T},密度κ_{n}和Hamiltonianκ_λ的对数梯度。与精确的ψ依赖性汉密尔顿人相比,与近似恒定的哈密顿量的病例相比,增长率和潜在曲线得到了显着修改。全球线性分析的所有结果都符合一个半拉格朗日线性的线性vlasov求解器,其精度良好。与基于半拉格朗日方案的vlasov-solver相比,这种频谱方法非常快,需要较少的计算资源。
Trapped ion modes (TIM) belong to the family of ion temperature gradient (ITG) modes, which are one of the important ingredients in heat turbulent transport at the ion scale in tokamak plasmas. It is essential to properly estimate their linear growth rate to understand their influence on ion-scale turbulent transport. A global linear analysis of a reduced gyro-bounce kinetic model for trapped particle modes is performed, and a spectral method is proposed to solve the dispersion relation. Importantly, the radial profile of the particle drift velocity is taken into account in the linear analysis by considering the magnetic flux ψ dependency of the equilibrium Hamiltonian H_{eq}(ψ) in the quasi-neutrality equation and equilibrium gyro-bounce averaged distribution function F_{eq} . Using this spectral method, linear growth-rates of TIM instability in presence of different temperature profiles and precession frequencies of trapped ions, with an approximated constant Hamiltonian and the exact ψ dependent equilibrium Hamiltonian, are investigated. The growth-rate depends on the logarithmic gradient of temperature κ_{T} , density κ_{n} and equilibrium Hamiltonian κ_Λ . With the exact ψ dependent Hamiltonian, the growth rates and potential profiles are modified significantly, compared to the cases with approximated constant Hamiltonian. All the results from the global linear analysis agree with a semi-Lagrangian based linear Vlasov solver with a good accuracy. This spectral method is very fast and requires very less computation resources compared to a linear version of Vlasov-solver based on a semi-Lagrangian scheme.