论文标题

较低维度的紧凑型复合空间的野生自动形态

Wild automorphisms of compact complex spaces of lower dimensions

论文作者

Jia, Jia, Wang, Long

论文摘要

如果没有非平凡的适当不变分析子集,则紧凑型复合空间的自态被称为野生。我们表明,承认野外自动形态的紧凑型复合物必须是复杂的圆环或某些类型的Inoue表面,并且这种野生自动形态的熵为零。作为我们论点的副产品,我们获得了有关Inoue表面自动形态群体的新结果。我们还研究紧凑型卡勒三倍或四倍的野生自动形态,并将Oguiso-Zhang的结果从投影案例概括为Kähler案。

An automorphism of a compact complex space is called wild in the sense of Reichstein--Rogalski--Zhang if there is no non-trivial proper invariant analytic subset. We show that a compact complex surface admitting a wild automorphism must be a complex torus or an Inoue surface of certain type, and this wild automorphism has zero entropy. As a by-product of our argument, we obtain new results about the automorphism groups of Inoue surfaces. We also study wild automorphisms of compact Kähler threefolds or fourfolds, and generalise the results of Oguiso--Zhang from the projective case to the Kähler case.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源