论文标题
精确的网络:对神经辐射场精确的体积参数化的探索
Exact-NeRF: An Exploration of a Precise Volumetric Parameterization for Neural Radiance Fields
论文作者
论文摘要
神经辐射场(NERF)由于能够精确地综合新型场景视图而引起了极大的关注。但是,其基本配方固有的,沿着零宽度的射线的点采样可能会导致模棱两可的表示,从而导致进一步渲染的文物,例如在最后一个场景中脱叠。为了解决这个问题,最近的变体MIP-NERF提出了基于圆锥形视图的集成位置编码(IPE)。尽管以积分公式表示,但MIP-NERF将其近似为多元高斯分布的预期值。这种近似值对于短的碎屑是可靠的,但是随着高度细长的区域降解,这是在较大的景深下处理遥远的场景对象时会产生的。在本文中,我们通过使用基于金字塔的积分公式而不是基于近似的基于锥形的圆锥形的配方来探讨使用精确方法来计算IPE的使用。我们将此公式表示为精确的nerf,并为在NERF域内提供了为IPE提供精确的分析解决方案的第一种方法。我们的探索性工作表明,这样的精确配方符合MIP-NERF的准确性和此外,还可以自然地扩展到更具挑战性的场景而没有进一步修改的情况,例如在无界场景的情况下。我们的贡献旨在解决早期NERF工作中迄今未开发的Frustum近似问题,并还深入了解未来NERF扩展中分析解决方案的潜在考虑。
Neural Radiance Fields (NeRF) have attracted significant attention due to their ability to synthesize novel scene views with great accuracy. However, inherent to their underlying formulation, the sampling of points along a ray with zero width may result in ambiguous representations that lead to further rendering artifacts such as aliasing in the final scene. To address this issue, the recent variant mip-NeRF proposes an Integrated Positional Encoding (IPE) based on a conical view frustum. Although this is expressed with an integral formulation, mip-NeRF instead approximates this integral as the expected value of a multivariate Gaussian distribution. This approximation is reliable for short frustums but degrades with highly elongated regions, which arises when dealing with distant scene objects under a larger depth of field. In this paper, we explore the use of an exact approach for calculating the IPE by using a pyramid-based integral formulation instead of an approximated conical-based one. We denote this formulation as Exact-NeRF and contribute the first approach to offer a precise analytical solution to the IPE within the NeRF domain. Our exploratory work illustrates that such an exact formulation Exact-NeRF matches the accuracy of mip-NeRF and furthermore provides a natural extension to more challenging scenarios without further modification, such as in the case of unbounded scenes. Our contribution aims to both address the hitherto unexplored issues of frustum approximation in earlier NeRF work and additionally provide insight into the potential future consideration of analytical solutions in future NeRF extensions.