论文标题

张量限制定理对有限字段

A Tensor Restriction Theorem over Finite Fields

论文作者

Blatter, Andreas, Draisma, Jan, Rupniewski, Filip

论文摘要

限制是$ d $ - 道路张量的天然准排。在固定有限场上的张量时,我们建立了这一准阶的一个非凡的方面 - 即,它是一个良好的顺序:它不承认无限敌抗,也没有无限降低序列。这个结果让人联想到图形次要定理,对任意限制限制的张量属性$ x $有重要影响。例如,$ x $承认有限的许多禁止限制的特征,可以通过查看固定尺寸的子操作器来测试。我们的证明涉及对多项式通用表示形式的诱导,将张量限制定理的概括(例如固定程度的均质多项式)概括,并描述了任何限制性封闭特性的粗略结构。

Restriction is a natural quasi-order on $d$-way tensors. We establish a remarkable aspect of this quasi-order in the case of tensors over a fixed finite field -- namely, that it is a well-quasi-order: it admits no infinite antichains and no infinite strictly decreasing sequences. This result, reminiscent of the graph minor theorem, has important consequences for an arbitrary restriction-closed tensor property $X$. For instance, $X$ admits a characterisation by finitely many forbidden restrictions and can be tested by looking at subtensors of a fixed size. Our proof involves an induction over polynomial generic representations, establishes a generalisation of the tensor restriction theorem to other such representations (e.g. homogeneous polynomials of a fixed degree), and also describes the coarse structure of any restriction-closed property.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源