论文标题
所有链接均为半塑形
All links are semiholomorphic
论文作者
论文摘要
半X型多项式是函数$ f:\ mathbb {c}^2 \ to \ mathbb {c} $,可以在复杂变量$ u $,$ v $和复杂的conjugate $ \ overline {v} $中写入多项式。我们证明了Akbulut和King的“所有结是代数”的半型类似物,也就是说,三个角度中的每种链接类型都是由于半型多态多项式的弱孤立奇异性的链接而产生的。我们的证明是建设性的,这使我们能够在构造函数的多项式程度上获得上限。
Semiholomorphic polynomials are functions $f:\mathbb{C}^2\to\mathbb{C}$ that can be written as polynomials in complex variables $u$, $v$ and the complex conjugate $\overline{v}$. We prove the semiholomorphic analogoue of Akbulut's and King's "All knots are algebraic", that is, every link type in the 3-sphere arises as the link of a weakly isolated singularity of a semiholomorphic polynomial. Our proof is constructive, which allows us to obtain an upper bound on the polynomial degree of the constructed functions.