论文标题

全息图渐近等距代码

Asymptotically isometric codes for holography

论文作者

Faulkner, Thomas, Li, Min

论文摘要

全息原理表明,用于描述某些背景的扰动量子场的低能量有效电场理论的状态太多了。因此,自然而然的是,任何量子误差都以量子场理论为例,因为代码子空间不是等距的。我们讨论了该框架在代数QFT的处理中,该框架如何自然出现,该家族的CFT家族具有较大的$ n $限制。我们表明,在代码Hilbert Space中的固定状态作用时,可以在$ n \ rightarrow \ infty $限制中恢复等距代码。渐近等距代码配备了简单的因果楔的概念。虽然因果楔是加性的,但它们不需要满足HAAG二元性,因此导致了非平凡的纠缠楔子重建的可能性。互补恢复的代码定义为具有伸展到HAAG双网,其中所有因果边界区域都很好地定义了纠缠楔。我们证明了信息扰动权衡定理的渐近版本,并以此来证明边界理论因果关系是通过净扩展维持的。我们通过散装和边界相对熵或模块化流的渐近平等的纠缠楔延伸的存在来表征。尽管这些代码渐近地确切,但在固定$ n $的情况下,它们可能会在无法幸免的状态下遇到很大的错误。这使我们能够解决将重力建模为确切代码时出现的知名问题,同时保持重力期望的良好特征,包括出现了各种类型的非平凡的von Neumann代数的出现。

The holographic principle suggests that the low energy effective field theory of gravity, as used to describe perturbative quantum fields about some background has far too many states. It is then natural that any quantum error correcting code with such a quantum field theory as the code subspace is not isometric. We discuss how this framework can naturally arise in an algebraic QFT treatment of a family of CFT with a large-$N$ limit described by the single trace sector. We show that an isometric code can be recovered in the $N \rightarrow \infty$ limit when acting on fixed states in the code Hilbert space. Asymptotically isometric codes come equipped with the notion of simple operators and nets of causal wedges. While the causal wedges are additive, they need not satisfy Haag duality, thus leading to the possibility of non-trivial entanglement wedge reconstructions. Codes with complementary recovery are defined as having extensions to Haag dual nets, where entanglement wedges are well defined for all causal boundary regions. We prove an asymptotic version of the information disturbance trade-off theorem and use this to show that boundary theory causality is maintained by net extensions. We give a characterization of the existence of an entanglement wedge extension via the asymptotic equality of bulk and boundary relative entropy or modular flow. While these codes are asymptotically exact, at fixed $N$ they can have large errors on states that do not survive the large-$N$ limit. This allows us to fix well known issues that arise when modeling gravity as an exact codes, while maintaining the nice features expected of gravity, including, among other things, the emergence of non-trivial von Neumann algebras of various types.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源